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INTRODUCTION

The major objective of this report is to establish a relationship

between fatigue crack growth and internal damping. In defining this

relationship, a basis for monitoring the structural integrity of systems

subject to fatigue will be demonstrated. Thus, the value of this rela-

tionship is in nondestructive diagnostics, where the detection of crack

initiation and propagation are of great interest.

A secondary objective is the mathematical modeling of the crack

growth-internal damping relationship. To understand the relationship,

and apply it in the analysis of complex structures, a model is essential.

Without a model, extension of the relationship to allow monitoring of

structural integrity would be awkward and prone to failure. The model

provides a foundation to begin observations of fatigue failure, in

complex structures, using damping.

Previous work that categorized and analyzed damping mechanisms and

explored their relation with fatigue is described. Also, a detailed

description of subgoals required to establish a crack growth-internal

damping relationship is provided.

BACKGROUND

The purpose of this background section is to review existing

literature about internal damping and crack propagation and give the

reader an introduction to the research topic. Aspects of damping or

fatigue that relate to the research objective and are crucial to its

accomplishment are explored.



Damping Hechanisms

When a solid is subjected to vibration, several processes may occur

to dissipate energy, even at low amplitudes of vibration. The ratio of

energy dissipated to peak elastic energy is usually quite small; the

main significance being that information is provided as to the nature of

the processes involved. At large amplitudes, the proportion of energy

dissipated may be much larger as permanent damage accumulates within the

material.

The most important material damping process is the vibration of

dislocations. A dislocation is defined as a stable arrangement of atoms

such that, in the region of a few atomic distances, (n + 1) atoms in the

slip plane face (n) atoms across the slip plane (Figure 1). Movement of

dislocations produce an incremental strain that diminishes the effective

elastic modulus, while the energy dislocations dissipate during vibration

manifesting itself as "internal friction." There are also several relaxa-

tion processes contributing to internal friction that do not involve

dislocations. They are called relaxation processes because they change

the shape of the solid under load and because each has a certain charac-

teristic "relaxation time." Such processes arm grain boundary sliding,

thermal diffusion, atomic diffusion, and magnetostriction.

The relaxation processes were named anelastic by Zener, who first

interpreted them in toto (Ref 1). They create a peak in the curve of

internal friction versus frequency of vibration at a frequency approxi-
-i

mately equal to (relaxation time) . The magnitude of the internal fric-

tion is independent of the amplitude of vibration in a first approximation.

The more significant dislocation process is different in that no peak

exists until megacycle frequencies are reached, and the magnitudes of

the associated internal friction are not so independent of the amplitude

of vibration. To differentiate it from the relaxation processes it has

been called a process of static hysteresis (Ref 2).

Internal friction typically varies with the amplitude of vibration

(Ref 3) (Figure 2). Up to a strain amplitude of about 10- (Figure 2)

internal friction is independent of amplitude ("amplitude-independent"

range), then commences to increase with amplitude ("amplitude-dependent"



range). For very large amplitudes, material enters the fatigue range

and damping increases still faster, ultimately resulting in a fatigue

fracture. In addition to the amplitude of vibration, temperature and

frequency may affect the internal friction.

Considersble evidence indicates that most of this internal friction

is connected with the movement of dislocations (Ref 4 through 8). Pro-

vided the selected conditions do not excite a relaxation peak, dislocation

movement is the process responsible for most of the internal friction in

metals.

Having established the basics of internai damping and its primary

mechanisms, the next step is to examine previous attempts to relate

damping and fatigue.

Damping and Fatigue

Various researchers have sought a relation between damping and

fatigue. For many years, damping was believed to be the first indica-

tion of damage to material subjected to cyclic stress. It was further

believed that each metal was capable of dissipating only a certain

quantity of energy by internal damping, and that when this quantity was

exceeded, fracture by fatigue must follow. In fact, every experiment

made for the purpose of verifying this hypothesis has given negative

results.

Experimentally, F6ppl (Ref 9) has shown that the capacity for

dissipation of energy in the form of heat by internal damping is un-

limited. He conducted an alternating torsion test continuously for a

period of 3 years without the test piece breaking or showing any sign of

deterioration after 1,100 million cycles of stress. The rate of dissi-

pation of energy was sufficient to maintain the test piece at about

1000C above the ambient temperature.

Damping, then, is not directly related with fracture by fatigue.

It depends principally on the strain energy of the cycles, on the

temperature and certain other conditions of the test, and also, to a

smaller extent, on the number of stress cycles which have previously

been applied. For many metals, the damping capacity increases
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noticeably up to a certain number of cycles (about 2 to 10 million), and

then remains stationary as long as the conditions of the endurance test

are maintained unchanged.

From previous tests, it is possible to advance the following theory:

a fatigue crack results from the accumulation of damping effects (i.e.,

from the fact that under a variable stress higher than the fatigue limit,

constantly applied, damping continually increases up to fracture). For

a cyclic stress below the fatigue limit, the damping moves toward a fixed

value, or else diminishes continuously.

The origination of fatigue cracks is marked by an increase in damping.

This increase is associated with the accumulation of dislocations. Since

cyclic input of strain energy alters the thermal and internal surface

energies, dislocations tend to collect on the planes already containing

one or more dislocations (Figure 3). Eventually, (n) atoms face (n + 2),

(n + 3), or more atoms, resulting in relative motion of one plane to the

other. For aluminum alloys, Hanstock and Murray (Ref 10) were able to

predict the endurance, in tests under alternating torsion, by observing

the stage at which this increase in damping occurred.

The change in damping with the number of stress cycles applied is

related to the process of accumulative damage that results in fatigue

fracture, although it does not directly express the effect of damage,

but rather the effect of localized inelastic deformations accompanying

damage. It is, therefore, not the absolute value of damping capacity,

but its change with the number of cycles that indicates the process of

progressive damage. As a further complication to the interpretation of

damping, above a certain value of stress, the damping capacity is reduced

by work hardening, and is increased by the repetition of stress cycles.

The work-hardening process in a material seems to be due to the

long-range elastic interactions of its dislocations. Additional input

of strain energy may help to overcome these long-range stresses to

accumulate more dislocations on the slip planes, until the crystal

separates into two or more fragments, with interference and distortion

of the adjacent crystals. Continued cycling would eventually cause the

cracks to grow and coalesce into an open area (resulting in an insuffi-

cient area to support the load) and finally fracture.
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With the lack of success in previous attempts to directly relate

crack growth and internal damping, a different. approach was sought.

Prerequisites to defining a new approach are the examination of fatigue

processes and an understanding of how these processes are modeled.

Fatigue Processes

In examining the crack tip on a microscopic scale, it is convenient

to regard the fatigue life as consisting of a number of stages (Ref 11,

12). The total number of cycles to fracture is divided into four parts.

The first stage occupies an average period of N1 cycles and represents

the completion of work hardening. A plastic zone forms under load and
*

the crack tip blunts. An average period N2 is required for the formation

of the first submicrocracks, created by the accumulation of dislocations
*

at slip planes. Further N3 cycles delineate the third stage, during

which the submicrocracks grow and coalesce to form a crack of detectable

size. Finally, these cracks propagate across grains until fracture or
*

rupture occurs, and an additional number of N4 cycles elapse denoting

the fourth stage.

Damage occurs in the second stage and can be attributed to sub-

microcracks that are formed in regions where stresses are concentrated

because of the piling up of dislocations, or the presence of inclusions.

In succeeding stages two possible developments can occur. Either the

cracks grow quickly to a detectable size (the observable cracks at the

end of the third stage) or plastic flow occurs at the crack ends which

are stress concentration sites, so that the crack growth is temporarily

stayed. Stresses subsequently increase because of work hardening, and

new submicrocracks are formed at the ends of old submicrocracks. This

would suggest that cracks grow iteratively.

The general and most significant features of fatigue failure are

the initiation of surface microcracks and their subsequent extension

across and penetration into the body of the metal The increased life

resulting from the removal of a surface layer at frequent intervals

throughout a test, irrespective of whether the life is many millions or

only a few thousand cycles (Ref 13), demonstrates that crack initiation

is confined to the surface grains. Dislocation models leading to surface
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cracking have been proposed (Ref 14, 15, and 16) that lead to a geometric

cause of damage or damage on the slip plane. In general, surface cracking

can occur in any of three ways; specifically, as a continuation of surface

roughening in broad slip bands, as a result of severe strain incompati-

bilities across grain boundaries, or because of the presence of inclusions

or inhomogeneities in the surface.

Theories of crack growth based on a dislocation model begin with a

crack loaded in antiplane strain (Mode III). The plastic zone at its

tip can be conveniently represented by a continuously distributed array

of infinitesimal dislocations on the crack plane. Crack growth is assumed

to start when the accumulated plastic strain distribution at a crack tip

exceeds a critical value (stage 3), and continues as this value is exceeded

at successive points ahead of the original crack tip. It is then assumed

that the behavior in Mode I is similar to behavior in Mode III. In general,

such theories (Ref 17) predict that the rate of crack growth is proportional

to K1
4 (or AK, depending on the load cycle considered, where AK = (K max

- Kmin) and Kmax and K min are the maximum and minimum values of KI during

the fatigue cycle). As an example, Weertman's theory (Ref 18) started

with a model (Ref 19) of a freely slipping crack subjected to an applied

shear. In the model, a crack of length 2a, having plastic zones at either

end, was considered and the dislocation theory was used to calculate the

displacement in the vicinity of the crack tips due to this shear stress.

It was then shown that, under certain conditions, a crack lying normal

to a tensile stress, 0, can be considered in a similar manner.

The energy associated with the plastic zone at a crack tip is pro-
4

portional to K I. Theories based on the energy required to operate the

fracture mechanism, in general, will predict that the rate of crack growth
4

is proportional to KI , which is in agreement with dislocation theories.

The modeling of fatigue processes has found some success in estimating

fracture based on energy or work at the crack tip. In particular, equa-

tions relating plastic work and fracture are comi on in the literature.

Relating crack growth to internal damping through plastic work dictates

a study of the role of plastic work in fatigue.
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Plastic Work in Fatigue

Coffin and others (Ref 20) found that data obtained from reversed

direct constant plastic strain amplitude tests, designed to iive failures

in up to about 105 cycles, conformed to the relationship:

N1/ 2 E = (1)P

where N is the number of fatigue cycles, c is the plastic strain ampli-P

tude, and C is a material constant. In the case of annealed low-carbon

steels exhibiting a marked yield point, the relation does not apply in

the immediate region of discontinuous yielding, but becomes applicable

for the balance of the stress-strain curve. Manson (Ref 21 through 24)

presented in analysis of direct loading constant plastic strain amplitude

tests for 30 materials of widely differing static properties (Ref 25)

showing that in all cases the endurance up to about 5 x 104 cycles was

related to the plastic strain range by the relationship.

N 0 .6  =C

p

He suggested that the results conformed to this relationship, and not

Equation 1, because N had been taken as the number of cycles to complete

the fracture of the specimen. Equation 1 was based on endurances where

cracks were first visible on the specimen surface. It is now accepted

that the value of the exponent in Equation 1 is not a universal constant;

it varies with material, environment, and the criterion adopted for failure

(Ref 26, 27).

The relationship between stress, plastic strain, and plastic strain

energy during a low-endurance fatigue test was studied by Morrow (Ref

26). He related fatigui life to the total plastic strain energy generated;

that Is, C is made a function of the integrated areas of the hysteresis

loop u. to the point of failure. Radhakishnan (Ref 28) modeled fatigii

failure on the basis of total energy absorbed and proposed that the total

hysteresis energy to failure, Wf, can be given by:

7



Nf

Wf = f dw(N) dN (2)

0

where dw is the plastic energy absorbed per cycle at any given time and

Nf is the number of fatigue cycles to failure. For most materials, the

hysteresis loop is relatively stable after a certain initial life. Taking

E as the average value of the plastic-strain range during the lifetime,
P

the energy absorbed per cycle can be approximately given as:

dw = A2a Ep (3)

and the total energy absorbed, Wf, up to fracture will be:

Wf = A2 aEpN f  (4)Wfp

where A2 is a material-dependent constant and a is the maximum cyclic
2 a

stress.

Experimental data support-ing the (AK)4 depe aency of growth rate

predicted by both dislocation and energy theories can be found in the

literature. For example, tests (Ref 29) on steel, aluminum alloy,

titanium, and magnesium sheet have shown that:

da = D(AK)4
dN

where D is a material constant. Similar results were obtained for 70/30

brass specimens (Ref 30). On the other hand, data can be found in the

literature that do not conform to this relationship (Ref 31).

Attempts to correlate plastic work directly with crack growth (Ref

32) have resulted in:

(A 4da A
dN G42U

G, U



where A is a dimensionless constant, G is the shear modulus, ' is a

strength parameter, and U is the integrated plastic work expended in the

plastic zone. Izumi and Fine (Ref 32) conclude that the plastic work

per unit area of fatigue crack propagation is an important parameter

that establishes the rate of fatigue crack growth. This report will

assume that Izumi and Fine are accurate in their conclusion, and will

attempt to use plastic work as a basis for measuring structural damage

and coupling internal damping with crack propagation.

OBJECTIVES

This research has two objectives. The first objective is to

experimentally develop a relationship between lcw cycle fatigue crack

growth and internal damping. The second objective is the mathematical

modeling of specimens to interpret and extrapolate the internal damping-

crack growth relationship and apply it to other geometries and load

conditions.

Accomplishment of these two objectives will establish a foundation

upon which nondestructive evaluation techniques may be constructed. The

first objective, the relationship, provides a basis for monitoring

structural integrity. The second objective, the mathematical model,

provides a process for expanding the relationship to meet the demands of

monitoring complex structures.

Relationship of Crack Growth and Damping

Various researchers have shown that crack propagation and internal

damping are closely linked: fatigue damage is accompanied by changes in

specific damping capacity. This relationship, however, is not a direct

one. The failure of many experiments to prove a direct relationship has

made that point clear. To determine how damping is related to crack

growth, an Investigation must look for an !ndirect linkage between the

two phenomenon. An indirect linkage suggests that the establishment of

this relationship requires the merger of two previously developed theories

rather than the creation of a new theory; two theories, an internal damping

9



mechanism and a fatigue damage mechanism, that have a common element.

In merging the two mechanisms to form a single theory of fatigue damage

accompanied by internal damping, care must be taken to assure that both

mechanisms are used within the context of their assumptions.

The relationship must be expressed in a manner that facilitates

experimental verification. Thus, an analytical expression of crack

growth or fatigue damage as a function of changes in specific damping

capacity is required. To verify this expression and the associated

relationship, a series of fatigue tests must be planned. In general,

testing would begin with fatigue specimens that minimize effects of

complex parameters such as specimen geometry, variable loadin md

stress fields. After these initial experiments provided satisfactory

results, more complex parameters could be included for testing and

verification.

Mathematical Model

To incorporate increasing complexity into the testing, the

specimens must be mathematically modeled. The modeling provides two

significant functions:

1. A model allows more complex specimens to be fatigue tested by

revealing the interaction of the additional parameters. Changes to

specimen geometry or loading will affect both crack growth and internal

damping, the effects of these changes must be known in advance in order

to verify the test results.

2. A model will provide a solid foundation for a diagnostic tool

for detecting crack growth in structures. The model must be simple to

act as a tool, but it must be comprehensive to provide accuracy.

Verification of the model requires simple fatigue specimens that

can be vibrated at low amplitudes during the fatigue process for data

collection. The data from the series of tests will be analyzed using

the model for comparison with the actual test results.

10



The model will have to include elements to express a continuous

structure (the specimen) undergoing both dynamic (data collection

cycles) and static (fatigue cycle) loading. In addition, the model must

adequately handle a growing crack (or cracks) in the specimen as well as

the changing internal damping capacity. The internal damping is not

only changing at a global level, but on a local level as well. Damping

is a localized phenomenon, and areas close to a propagating crack will

dissipate heat at higher rates than areas remote from the crack (Ref

33).

TECHNICAL APPROACH

An analytical approach to develop a relationship between crack

growth and internal damping is presented to provide the theoretical

foundation for the relationship; a foundation integrating internal

damping, crack growth, plastic strain, and dislocations.

Internal Damping Mechanism

The goals of this section are to define an analytical expression

for internal damping and to accommodate, within that expression, the

strain distribution experienced by a structure or system. The phrase

"analytical expression" is used, rather than "mathematical model,"

because the product of this section represents a single mathematical

term or expression of the final model.

Analytical Expression. In 1956, Granato and Liicke (Ref 34) pre-

sented a theory of internal damping due to dislocations. Granato and

Liicke examined two types of losses: frequency-dependent loss (AI) and

strain-amplitude dependent hysteresis loss (AH). Their theory provides

a quantitative interpretation of these losses. The two losses are given

by (Ref 35):

11



9A 0 ANI K'A 1 KEa 1
AH - L L 0ex L E0 5

C C 0 c 0

and

SA AL4 Bw

p2C

where A = mechanical energy lost per cycle divided by twice
the total vibrational energy

A = total length of movable dislocation line per unit volume
(dislocation density)

a = lattice parameter

E0 = strain amplitude

w = circular frequency

v = Poisson's ratio

A0 = 4(1-v)/w
2

A = vpb
2

C = 2Gb2 /V(l-v)

p = density

b = Burger's vector

LN= network loop length

L = impurities loop lengthC

L = effective length of dislocation loope

K = orientation and anisotropy parameter

= orientation factor

Assuming that all parameters in Equation 5 can be held constant for

a given material under cyclic stress, with the exception of A and C02

the equation may be rewritten as:

12



AH = AC1C2/E0 exp(-C 2/e0 ) (6)

where CI = QA /OL3 /L and C2 = KE'a/L . As modeled by Equation 6, all

of the strain amplitude data may be described in terms of a single func-

tion and when plotted in the form:

log( 0AH) versus lI/E 0

should lie on a straight line. The slope of this straight line is given

by C2 and the intercept by ACIC 2 . Figure 4 shows a Granato-Lucke plot
-I

of strain amplitude times decrement versus (strain amplitude)

Bauer and Gordon (Ref 36) expressed the amplitude-independent

decrement, AV resulting from dislocation vibration in the kilocycle

range of frequencies as:

A, = C3A (7)

where C3  QA 0L c4Bw/ 2C. The total decrement, A, equal to AI + AH is

now presented in terms of Equation 6 and 7.

A = A[C 3 + C1C2/E0 exp(C2/ 0 )] (8)

Equation 8 provides a relation between internal damping, A, and dislocation

density, A.

The Granato-Lucke (G-L) theory does not always reflect experimental

results and its accuracy is unclear. At times, experimental data plots

of log(E 0A H) versus I/t0 are not straight but somewhat curved (see

Figure 4). The decrement measured at low strain amplitudes appears to

be greater than that predicted by the theory. Some have argued that the

model is essentially correct but the calculations are not yet sufficiently

refined. Other authors have recommended modifications to correct the

model (Ref 37 through 40). Unfortunately, all these detailed discussions

13



are inconclusive because of the difficulty of specifying all the various

significant factors. In particular, the dependence of the decrement on

strain amplitude (Equation 5) is largely determined by the distribution

function for the lengths of the dislocation loops, LN. Granato and Liicke

assume an exponential function, but there is little substantiation of

this approximation for any given material or geometry.

The theoretical treatment that researchers have used to explain

internal damping, as illustrated in Figure 2, is broken into three

regions. These regions are labeled in Figure 2. The first two regions,

elastic and anelastic, are a function of dislocation damping. For the

elastic region, the dislocations are assumed pinned by point defects,

and vibrating as stretched strings, subject to viscous damping. In the

anelastic region, the stress level is sufficient to bow out the disloca-

tion and pull it away from pinning point defects. Lowering the stress

repins the dislocation, but the motion is different on the outward and

return paths, producing a hysteresis loop. The third region, fatigue-

plastic, is believed to result from the formation of microcracks that

can fuse together to form fatigue cracks. For pure aluminum, shown in

Figure 2, dislocation damping is the dominate form of damping up to 2 x
-4

10 microstrain.

A second treatment, evolving from McKavangh and Stacey (Ref 41) and

Jackson and Anderson (Ref 42), is that the dominate cause of energy

dissipation, in the anelastic region, is grain boundary relaxation or

slippage. It is difficult to apply the conclusions of Jackson and

Anderson to this research, however, since their study investigated

attenuation in the earth's mantle, an environment of high temperature

where dislocations are likely to be annealed out. The work of McKavangh

and SLacey, on the other hand, raises doubt as to the nature of the

hysteresis in the anelastic region. Their observations support non-

linear internal friction due to cracks or grain boundaries. Further

examination into the nature of anelastic internal damping is needed, but

given the two theoretical treatments available, this research effort

will rely upon the extensive experimentation and analysis that are

embodied In the Granato and Liicke model.
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Application of the G-L theory in the form of Equation 8 is compli-

cated by the pattern of strain amplitude distribution within a specimen.

Longitudinal, flexural, and torsional forced vibrations produce different

strain distributions. The different strain distributions necessitate

the derivation of mathematical expressions of the decrement on the basis

of each type of vibration.

Strain Distribution. According to Equation 4 of Reference 43, the

strain amplitude-dependent decrement distribution is given by:

A H =  f C2AH(E)dV/f E2dV (9)

where V is the volume of the specimen. Povolo (Ref 44) showed that an

expression for AH can be obtained directly in terms of exponential

integral functions and that Equation 6 oversimplifies the results for

the valid range of strains as given by Granato and Licke, that is,

0o/C 2  0.25. From Povolo:

Ac = ACI(C2/E0) 2EI(C/) (10)
H 1 20 12 0

where E is the exponential integral of order n = 1 and:

-xt

E(x) f e dt

is the exponential integral function. From Equation 9, using Povolo's

corrected strain amplitude-dependent decrement of Equation 10, the dis-

trihiiHon neculiar to the type of vibration can be derived.

A slight modification to Equation 9 (required for specimens that

have developed interior plastic zones at a location of stress concen-

tration) is separate integrals for the plastic and elastic regions.
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Given a small amplitude of vibration, c09 it is assumed that the only

parameter that changes in Equation 9 between the two regions is the

dislocation density, A. This assumption is based on small amplitude

vibration of the specimen when internal damping data is collected.

Burdett and Queen (Ref 45) noted that internal damping developed during

plistic strain may be expressed in the form:

A = A exp [B( 0  - C )]

where E is the critical strain above which plastic strain occurs, and AP

and B are temperature-dependent terms. Burdett and Queen concluded that

the G-L model is valid in cases where the movement of the dislocations

is not affected by obstacles outside their equilibrium position. This

is the case when the specimen experiences low strain vibration; therefore,

it is valid to assume that only the dislocation density has changed when

comparing internal damping between the elastic region and plastic zone.

The distinction between the AH and A contributions appears to involve

the degree of pinning of dislocations. For lightly pinned dislocations

the contributions are well separated. In the case of heavily pinned

dislocations, the AH is suppressed completely and the dislocations

contribute immediately to A at relatively high strain amplitudes.

The plastic zone size and shape depends on the plastic flow

properties (Ref 46), but the dimensions are proportional to (KI/oy)2.

The nominal plastic zone radius, r p, is approximately:

2

r I- for plane stress (11)p 21T
Y

and

2

r - for plane strain (12)p 6 7 r a ,
Y
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where a is yield stress. The plastic zone radius is about half the

extent of the plastic zone and is applicable when the zone size is small

compared to the specimen dimensions in the plane of the plate.

Breaking Equation 9 into two separate integrals (the first for the

elastic region and the second for the plastic zone) produces:

H = [Ae fe 2OC(E)dV + A f E 
2 0(E)dVJ/f E 

2dV (13)

where the parameters with subscripts e and p correspond to the elastic

region and plastic zone, respectively; the strain-dependent function,
c

OH, is given by:

OH = CI(C 2 /E 0 )2 E(C 2 / 0 ) (14)

that is, c = Ac/A. In a similar manner, the strain-independent decrement
H Hn -c

may be expressed as AI = C3 (A V + A V )/V, where V and V are the
1 3 e e p p e p

volumes of the elastic region and plastic zone, respectively.

Equation 13 expresses material dislocation damping as a function of

elastic and plastic strain distributions given by Equation 14. Having

obtained an analytical expression for dislocation damping, the second

step is to develop a fracture failure criterion.

Crack Growth

Monitoring structural integrity requires a procedure for quantifying

fatigue damage and estimating crack growth. A fracture criterion based

on plastic work is proposed for accomplishing this task and providing an

interface to amplitude-dependent damping.

Failure Criterion. In selecting Equation 3 as a fracture criterion,
n

Feltner and Morrow used the empirical equation a = k E (see Figure 5)a pp

to relate the true plastic strain to true stress as shown in Figure 6

(Ref 47). With their empirical stress-strain relation, Feltner and

Morrow were able to express Equation 3 as:
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Wf = A2kp Ep  Nf (15)

so that the total energy absorbed to fracture is a function of the true

plastic strain average, E . For the purposes of this investigation, thep
definitions of true stress and true strain are taken from Davis, Troxell,

and Wiskocil (Ref 48). In postulating that the plastic-strain energy

portion of the hysteresis energy accounts for the damaging effects of

cyclic stress, Feltner and Morrow made three assumptions: (1) a loga-

rithmic plot of static true stress versus true plastic strain is valid

when extrapolated back into the fatigue stress region; (2) the damaging

energy per cycle for a given stress amplitude is constant and is equal

to the area under the static stress plastic-strain curve; and (3) the

total damaging energy required to cause fatigue fracture is constant and

as a first approximation is equal to the area under the static true

stress - true strain curve.

A correction made to assumption 3 is that the total damaging energy

required for fatigue fracture is not constant but related to the strain

amplitude per cycle as follows:

W2 2-m
W 2 =(E2)(16)

where m is the hysteresis energy exponent which Halford and Morrow (Ref

49) derived from Griffith's crack theory. Halford and Morrow's value,

m = 4n, is accurate for 4340 steel, but not necessarily for other metals.

There does not appear to be a relationship between strain amplitude and

hysteresis energy to failure that is independent of material properties.

The lack of a relationship between strain amplitude and hysteresis energy

does not invalidate Equation 16 or assumption 3, it simply requires experi-

mental determination of m for each material investigated. Combining

Equations 15 and 16 results in a relationship between plastic strain and

fatigue life:
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-k

where k = 1/C and C, the fatigue-ductility exponent introduced in the

Manson-Coffin law, is shown to be 1/(5n+l). Again, this value is accurate

only for 4340 steel. From Radhakishnan (Ref 28), m is not equal to 4n,

but is given by the formula:

m = k - (n + 1)

Both n and C (and thus k) must be determined experimentally. Substituting

Epu' E 1/2, and Nf for l, E 2' N1, and N2, respectively, and rearranging

Equation 15:

-k
N = 1/2 (p/E pu) (17)

produces a power law relation between fatigue life and the average plastic

strain per cycle. In Equation 17, E is the static plastic strain fracturepu

value at 1/2 cycle. Figure 7 demonstrates the relationship between fatigue

life and average plastic strain per cycle as modeled by Equation 17.

Criticism has been levied against the use of hysteresis energy as a

criterion for fatigue failure. The first criticism is that attempts to

correlate fatigue life with tensile properties have been unsuccessful.

However, there are investigations that indicate a relationship between

the fatigue strength and parameters of the true stress-true strain curve

(Ref 50 and 51). The second source of criticism is due to the difference

between monotonic and cyclic stress-strain curves. This is a minor argu-

ment, since the difference is small enough to neglect when the two curves

are compared in the fatigue stress range (Ref 28).

Material Properties. Crack growth is a material-dependent phenomenon.

The total hysteresis energy to failure, Wf, and plastic energy absorbed

per cycle, dw, were presented in Equation 2. For most materials, the

hysteresis loop is relatively stable after a certain initial life. This
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stability is dependent on the stress level. There is more stability at

low stress levels than at high stress levels. In some cases, like carbon

steels, no stable loop is obtained throughout the life of the specimen,

especially when the stress level is near the yield strength. A consid-

erable amount of softening is observed during the initial stages, followed

by a hardening process, which is rapid when the stress level is high and

slow when the stress level is low. Hence, the value of dw per cycle

changes with stress cycles depending on the hardening and softening of

the material.

The empirical relationships and mathematical models developed to

correlate fatigue life with mechanical properties of metal have been

criticized for depending too greatly on the idealization of the pro-

perties of metals. At the microscopic level where fatigue damage

initiates, all metals are heterogeneous. The fatigue resistance of a

small volume of material will differ from that of another because of

inclusions, differences in grain size, anisotropy, orientation, micro-

residual stress, etc. The fatigue behavior of a real material is the

integrated phenomenon of these various microscopic factors. The dis-

tribution of these factors, and thus the metal's mechanical properties,

are random throughout the material. Because of this probabilistic

distribution, the fatigue limit and fatigue life at a given stress will

vary from specimen to specimen.

Plastic Strain and Dislocation Density

An empirical relationship between p]astic strain and dislocation

density is presented. This section couples together fracture criterion,

based on plastic work, with internal damping, based on dislocation

density.

Dislocation Model for Stress-Strain Behavior. A number of authors

have expressed stress-strain behavior via a dislocation model. For alpha

iron (a-Fe), during constant strain-rate tensile exp-riments, modeling

the yield-point behavior has produced a variety of theories. Cottrell

(Ref 52) explained the upper yield point by introducing the pinned dis-

location concept A relatively high initial stress was required to unpin
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dislocations, but once unpinned they could move at a lower stress level,

In his approach, Hahn (Ref 53) explained the yield-point phenomenon as a

result of the rapid increase of mobile dislocations when yielding begins.

A model developed somewhat later by Bergstr6m (Ref 54), emphasizes the

A-c relationship and is based on dislocation behavior during deformation.

Bergstr6m has five assumptions for his model:

1. The true flow stress-dislocation density relation is given by:

a o. + aGbA 1/ 2  (18)
10

where a and a. are constants. A review of experimental data in support
io

of Equation 17 is provided by Otte and Hren (Ref 55).

2. Both mobile and immobile dislocations are present at any true

strain, E.

3. The mobile density, L, is strain independent and much smaller

than the immobile density, A..1

4. The variation of A with E is determined by the creation, the

immobilization, the remobilization, and the annihilation of dislocations.

5. Those effects that arise from changes to the scale or arrange-

ment of the dislocation structure and that do not affect assumption 4

above, are negligible.

Bergstr6m derived the following differential equation, giving the

dislocation density, A, as a function of plastic strain, c :P

dA - U - xA (19)

P

where U is the rate of immobilization of mobile dislocations and x is

the strain-independent probability for the remobilization of immobile

dislocations, and:
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U. =1/bs

where f is an orientation factor (0.5 and 0.32 for h.c.c. and f.c.c.,

respectively) and s is the dislocation mean free path. Bergstr6m (Ref

54) contends that a strain-independent s is a good approximation for

b.c.c. metals if X is small enough for the product xA to be negligible

at small strains. With a strain-independent U., the integration of

Equation 19 results in:

U.
A -1. [1 - exp(-XEp)] + Aoexp(-xE p )

with A = A at C = 0.
0 p

As a modification to the Bergstr6m theory, Vetter and van den Beukel

(Ref 56) assume the dislocation mean free path is of the order of and

proportional to the dislocation cell size, d. The cell size decreases

with increasing strain, and has been shown to depend on the dislocation

density according to:

K
d -AK

A 1/2

where K 20 for iron. Therefore:

s f-K.-_ (20)
AI1/2

where f is a constant of order I. Inserting Equation 20 into Equation

19 and integrating

1I/2 X ' [I/2O

A 1 = 11 - exp(-1/2xc )] + A /2exp(-1/2Xtp) (21)
Xp 0p

where A' = 1/4bKf.
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Damping Mechanism-Fatigue. Criterion. Equation 21 provides a

relationship between plastic strain amplitude and dislocation density

and is the link to combining the damping mechanism (Equation 13) with

the fatigue criterion (Equation 17). Rearranging Equation 21 so as to

erpress e as a function of A,
p

= 2 In (A - A:) (22)

A 0  'X A'

For the fatigue criterion, as described by Equation 17, the average

plastic strain, E is the sum of the plastic strain per cycle, pi'

divided by the number of elapsed stress cycles. In equation form:

N

E = N. (23)

i~ 1

where N is the number of elapsed cycles. The right-hand side of Equation

22 is then substituted for E i in Equation 23 and the fatigue criterion

becomes a function of dislocation density:

N A 1 /2

- 2 In i xA' (24)p Nx ( A01/2 x A

i=l 0

Damping was previously shown to be dependent on dislocation density

(see Equation 13); however, this dependency consists of two dislocation

density terms: A and A . It is now assumed that the plastic zone dis-e p

location densiLy, A is responsible for all plastic strain directly

related to crack growth, so that no crack growth exists in the elastic

region. That is to say, Equation 22 may be rewritten as:

A 1/2

Ep = In (25)X AO1/2 X - A'

0A
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Equation 25 is consistent with the fatigue process N2 stage (Ref 11, 12)

where voids form in the plastic zone and coalesce into microcracks.

This situation is illustrated in Figure 8 and is modeled by Ishikawa

(Ref 57) as a slow crack extension within the plastic zone, where the

plastic zone is a uniform distribution of dislocations. Ishikawa derives

the plastic strain in the plastic zone from the crack extension force

as:

EP = a(s/r ) (26)

where a is approximate unity.

Rearranging Equation 13 into:

Ac V f E2dV A e[V f E OH(,)dV + C3 V 2 dV]
A = 2 H 2 e (27)

pV E Oc(,)dV + C3 V E 2dV

solves for the plastic zone dislocation density A in terms of the cor-
-C p

rected total decrement, A ; the elastic region dislocation density, Ae;

the plastic zone radius, r ; and the strain amplitude, c. Dislocation

density increases for some metals at stresses below the macroscopic yield

(Ref 58) and under these conditions it is not possible to eliminate Ae

as a variable. lowever, for metals whose dislocation density does not

increase appreciably until yield, A0 may be used in place of AE (Ref

56).

Equation 17 presents fatigue life as a function of average plastic

strain. Equation 24 determines average plastic strain from dislocation

density in the crack tip plastic zone. Equation 27 gives plastic zone

dislocation density from internal damping. With Equations 17, 24, and

27, the objective of developing a theoretical relation between fatigue

and damping has been accomplished. The next requirement is to test the

validity of Equations 17, 24 and 27.
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EXPERIMENTAL APPROACH

Experimental verification of the theoretical development of a

relationship between crack growth and internal damping begins with the

determination of material properties, including damping, and concludes

with fatigue testing of 1018 and 4340 steel beam specimens.

Purpose

The main purpose of experiments is to test hypotheses. The fatigue

tests used in this research will determine whether internal damping

changes with crack growth as suggested by Equations 17, 24, and 27.

Damping Mechanism-Fatigue Criterion Relationship. Successful ver-

ification of Equations 17, 24, and 27 in a test series of one material

and specimen type is no assurance that the proposed constitutive rela-

tionship between crack propagation and internal damping is valid for all

material and specimen types. It merely states that the relationship

between fatigue and damping is valid for the material and strain dis-

tribution tested. A measure of validity, rather than complete verifi-

cation, is required at this point. Determining whether or not the

relationship can be established for a particular material and specimen

type is the first step. This relationship was built through a process

of steps culminating in Equations 24, 25, and 27. As many of these steps

as possible must be independently verified to assist in determining the

problem areas if discrepancies arise. Therefore, the primary purpose of

testing Is to determine:

1. Is plastic work related to fracture as suggested by Equation

15?

2. Is plastic strain related to fracture by Equation 17?

3. Does Equation 13 accurately model internal damping as a

function of strain and plastic zone and elastic region

dislocation densities?
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4. Will the Bergstr6m model relate plastic strain and dislocation

density as expressed in Equation 22?

5. Do all the previous steps combine to relate crack propagation

to internal damping?

The five questions listed above interrelate internal damping, crack

propagation, plastic strain, and dislocation density. These four param-

eters must all be evaluated during testing in order to verify the internal

damping-fatigue criterion relationship.

Fatigue Life, Damage Assessment, and Fracture Prediction. A step

beyond verifying the internal damping-crack growth relationship is to

predict fatigue specimen life and the subsequent specimen failure. The

fracture prediction process entails extrapolating the average plastic

strain calculated from the damping data to arrive at the predicted total

number of fatigue cycles to fracture, Nfp, as presented in Equation 17.

A simple approach to damage assessment is to use the ratio of fatigue

cycles completed, Nc) to fatigue cycles to fracture, N fp, as predicted

by the fatigue life estimate of Equation 17. In equation form:

D% = 100% (Nc/N fp) (28)

where D% is the damage assessment in percent. A comparison of this

estimate with the actual crack growth will suffice as verification.

This linear approach to damage assessment should prove satisfactory for

low cycle fatigue using constant crack growth rates.

The linear prediction of fatigue damage represented by Equation 28

is adequate for loads of a constant stress intensity factor; however, it

is inaccurate for other types of loads. The life of a structure under-

going fatigue, when based on plastic work, is given by Equation 17.
th

Specifically, for a varying plastic strain per j fatigue cycle, pj,

the fraction of fatigue life expended for a structure is given by:

LF = 2 Z P. (29)
j pu
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where c is the static plastic strain fracture value at 1/2 cycle. Aspu

the crack growth to failure, af, divided by the crack growth in one cycle,

ia., results in fatigue cycles to failure, Nf, substitution in Equation

17 produces the following relation:

(Aa. I/k (30)
pi = pu kaf )

Substitution of E . into Equation 21 determines the plastic zone dis-
Pi th

location density for the j fatigue cycle. Combined with an estimate

of the plastic zone radius from Equation 11 or 12, an approximation of

the internal damping can be made from Equation 13.

Equation 29 is presented as a more accurate and reliable estimation

of fatigue damage than Equation 28. Successful verification of Equation

29 will mcet the objective of establishing nondestructive evaluation

techniques based on internal damping.

Test Arrangements

The two test arrangements described here are designed to answer the

questions raised above. In so doing, these experiments will verify the

proposed relationship between fatigue and damping for 1018 and 4340 steel.

Fatigue Test. To accomplish the desired goals of relating damping

to crack growth and predicting fatigue life, a series of fatigue tests

is required. These tests monitor crack growth, damping, load, strain,

and number of fatigue cycles.

The fatigue test schematic is shown in Figure 9, the fatigue beam

specimen in Figure 10, and the test procedure is described in detail in

Appendix A. The following description briefly summarizes the fatigue

test procedure.

An MTS test machine applies a cyclic load to a 4340 beam specimen

(100 pounds for damping datum and up to 1,400 pounds for fatigue). The

beam specimen is initially notched and uncracked. The fatigue load has

27



a stress ratio of zero and is continuously adjusted to maintain a constant

stress intensity factor during the fatigue process. Crack length data

is collected during data collection cycles from crack propagation gages

on either side of the specimen. The crack length measurement is used to

update the fatigue load setting. The stress intensity factor is calculated

from (Ref 59):

KI = o/i€i F(a/b) (31)

where a = 6M/b
2

M = moment

b = specimen thickness

and

F(a/b) = 1.122 - 1.4(a/b) + 7.33(a/b)
2 _ 13.08(a/b)

3

+ 14.0(a/b)4  (32)

is an empirical formula accurate to 0.2 percent for a/b < 0.6. In the

case of a four-point beam, the moment is given by M = I/2P1 a, where P is

the total applied load and 1 is the distance from a knife edge to thea

nearest load point. Substituting for a in Equation 31 and solving for

P:

b2 I

31 a4-i F(a/b) (33)a

P of Equation 33 is calculated after every data cycle and a new fatigue

load setting is communicated to the MTS test machine.

A vibration generator attached to the specimen excites the beam in

a range of 5 to 20 Hz around the fundamental frequency, wnl. For example,

if the specimen resonates at 320 Hz, a frequency range from 310 to 330

Hz is swept by the vibration generator. While the beam is being excited,

strain gage data are input to a spectrum analyzer that converts the data
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from the time domain to the frequency domain and then transfers it to

the Lab-Datax computer for damping calculations. The same data also

provide the fundamental frequency of the beam. For each damping data

cycle the following data are collected:

1. Fatigue cycle number, N

2. Fatigue load, P

3. Maximum strain, ea

4. Minimum strain, min

5. Crack length, a

6. Stress intensity factor, K1

7. Damping decrement, A

8. Transfer function amplitude ratio at Wnl , TF

The data are saved in a file on disk to be transferred at a later time

to a mainframe for processing and plotting.

All fatigue tests will begin with a 2000 load cycle damping datum

phase. During this phase, approximately 50 damping data cycles will be

performed and the resultant average damping value will be interpreted as

the normal damping state of the uncracked specimen as configured and

mounted in the fixture. The load during this phase will be approximately

100 pounds. The light loading is sufficient to detect minor slippage at

the knife edges and make appropriate adjustments to the clamping bolts.

Fatigue tests of 1018 steel beam specimens are similar to those

described for the 4340 steel specimens. The major difference is in the

fatigue load. For the 1018 steel specimens, the fatigue load is approx-

imately 800 pounds. Also, the load is held constant. Therefore, the

stress intensity factor increases as the crack grows. The stress inten-

sity factor is held constant for the 4340 steel specimens.

Microcracks initiate in the vicinity of a stress concentration as a

consequence of high load stress. High load stress forces dislocations

to pile up on a slip plane. A microcrack is nucleated as a result of

the short-range interactions of a few dislocations at the head of the
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pile. The remaining dislocations are presumed to produce the high stress

concentration needed to force the leading dislocations to form a micro-

crack (Ref 11, 60, 61, 62). In ductile metals, where dislocations are

easily generated, crack nuclei continue to form with increasing amounts

of strain, and these nuclei grow slowly into microcracks that eventually

join to form a macroscopic crack. Elasto-plastic analysis of cracks

often ignore the microcrack phase and directly model crack propagation

with dislocation strips or arrays (Ref 57, 63, 64).

For a cyclic load having a compressive mean stress, microcracks are

prevented from opening, retarding development, and impeding the coalescence

of microcracks into macrocracks. On the other hand, a tensile mean stress

tends to open a microcrack and spur crack development (Ref 60). The

fatigue tests of 4340 steel beams are designed to generate a tensile

mean stress. The microcracks developed in these specimens remain open,

under a zero stress condition, due to residual plastic stress.

Within the plastic region, elliptical microcracks have displacement

in two modes: opening and shear. Opening displacement spreads and then

closes the microcrack. This mode creates internal damping through energy

loss when the surfaces are in contact. Shear displacement moves one

microcrack surface parallel to the other. Damping is incurred through

the dissipation of heat as the two surfaces rub past one another.

The following assumptions were set forth by Budiansky and O'Connell

(Ref 65), in their analysis of randomly distributed cracks:

I. Microcrack closure effects are ignored.

2. Microcracks have small openings between their opposite faces.

3. Microcrack edges are considered blunt.

4. Small stresses do not produce contact between microcrack faces.

5. Macroscopic incremental stress-strain relationship is linear.

6. General elliptic planform.
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Having a mean tension fatigue stress, microcracks in the 4340 beam

specimens meet the condition of assumption 2. Given the small damping

data cyclic stress (on the order of 500 psi) applied to the specimen

(described in Appendix A), it is reasonable to presume that condition 4

is also met. Meeting conditions 2 and 4 suggest that the microcrack

surfaces do not touch and thereby dissipate energy. Without dissipation

of energy, the microcracks cannot contribute to internal damping.

Two alterations to the fatigue test arrangement of Appendix A could

result in microcracks contributing to internal damping. First, the mean

fatigue stress would have to be in a range that would allow the microcrack

surfaces to move relative to one another under a small data collection

cyclic loading. The motion could be shear mode, opening mode, or a com-

bination of the two. Second, the data collection cyclic loading would

have to be large enough to overcome the residual plastic strain holding

the microcracks open and cause the microcrack surfaces to rub against

one another.

Internal Damping Test. Material parameters, required to calculate

dislocation damping in the plastic zone from Equation 27, are determined

experimentally by internal damping tests. This section summarizes the

test arrangement for determining internal damping material parameters.

Physical properties of materials are determined by repeatable exper-

imental testing. Internal damping, being a physical property, must be

determined by a series of tests for each material of interest. To answer

the question whether Equation 13 accurately models internal damping as a

function of strain and plastic zone and elastic region dislocation densi-

ties, testing of 4340 steel at various levels of strain is required.

Figure II is a schematic of the damping test arrangement and Figure

12 shows the damping specimen. Appendix B contains a description of the

test procedure. The following description summarizes this procedure. A

sine load function Is applied to the symmetric cantilever beam specimen

furnishing a stress ratio of negative one. An accelerometer measures

the load function while strain gages on the specimen measure the beam

response. The ratio of strain to acceleration at the resonant frequency

of the beam provides a transfer function ratio. From this ratio, internal
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damping for the material may be plotted against strain levels, thus

obtaining plots similar to Figures 2 and 4. The data collected from

these tests will include decrement, A, and strain, E. From data reduc-

tion, the parameters C1 , C2, and C3 of Equations 14 and 26 are estimated

for later application in refining the fatigue test data reduction.

Material Properties

Prior to performing fatigue and damping tests, testing was done to

determine the mechanical properties of 4340 steel. The chemical composi-

tion, heat treatment, and engineering tensile properties of the SAE 4340

steel used in this investigation are presented in Table 1. The SAE 4340

steel was selected as the test material for several reasons: (1) a sig-

nificant amount of crack growth data had been previously collected, (2)

a small plastic zone on the order of 0.01 to 0.03 inch developed at the

notch, and (3) there was continued usage of the material in applications

with conditions leading to cyclic fatigue. The large amount of crack

growth data available for 4340 steel allows quick verification of fatigue

test results. Conversely, 1018 steel produces a large plastic zone that

sharply contrasts with 4340 steel.

Testing and subsequent calculations (Ref 66 and 48) were done to

determine the true stress-true strain relationship of the materials.

Figure 13 depicts this relationship and has a strong resemblance to

Figure 6, the true stress-strain curve of 4340 steel used by Feltner and

Morrow (Ref 47). The true stress-plastic strain curve representative of

Figure 13 may be expressed as:

Sa kEn (34)a pp

where the strength coefficient k = 230.3x103 psi, and the strain hardeningp
exponent n = 0.0902. Coefficients k and n were computed using a leastp
squares technique (Ref 67).

Inserting Equation 21 into Equation 18 produces a second equation

relating stress, 0 and plastic strain, c

p
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A'

o = (0) + A- aGb[1 - exp(-1/2XEp)] (35)
X p

where 0(0) is the stress at zero plastic strain. A simplex algorithm

(Ref 68) was used to fit the data to a curve which resulted in A' =

6 -1 36.128x10 in. - , c(0) = 162.8x10 psi, and x = 8.613 assuming a = 0.8
-8and the Burger's vector, b = 10- . The shear modulus is calculated from

(Ref 69):

E
G - 2(1+v) (36)

where the elastic modulus has been experimentally determined as

E = 28.0xi0 6 psi and Poisson's ratio is v = 0.29 (Ref 66). Equation 36

produces G = 10.9xl06 psi. From Feltner and Morrow (Ref 47) the total

hysteresis energy for static fracture, based on Equation 34, is given

by:

kn+l
= p u (7

Wu n+l(37)

or based on Equation 35,

A' 2A'
Wu [(0) + A' aGb]pu + -2- aGb[exp(-i/2Xp) -1 (38)

The static test results are summarized in Table 2.

The final preliminary tests determined the critical stress

intensity factor of 4340 steel, KIc Three compact tension specimens
Ic ~ 3 1/2(Ref 70) were tested, producing a KIc = 76.5x]03 psi-in.'. From

Equation 12 and the yield stress given in Table 1, the plastic zone rp
would be expected to reach a maximum of 0.016 Inches for a specimen

experiencing plane strain conditions. Equation 27 integrates the dis-

location density and strain functions over volumes of the plastic and
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3
elastic beam material. With an elastic volume of about 5.6 in. versus

-6 . 3
a plastic volume of about 800 x 10 in. , the ratio of plastic to elastic

-6
material is on the order of 150 x 10 . This ratio suggests a large

plastic zone dislocation density or strain level is required to produce

a measurable internal damping change.

These values, together with the results from the internal damping

tests, will be used in the mathematical model to verify Equations 17,

24, and 27.

TEST RESULTS

The results of the four-point beam fatigue tests, and brief results

of the internal damping tests, are presented here. Detailed results of

the internal damping tests are in Appendix E.

In addition to the dislocation damping discussed previously, an

additional damping mechanism is analyzed for the 4340 steel beam speci-

mens. This mechanism dominates the damping response observed in these

specimens.

Internal Damping Tests

To validate the fatigue test results and mathematical model,

internal damping tests were conducted. This section summarizes the

results described in detail in Appendix E, and is based on the test

procedure presented in Appendix B.

The coefficients associated with dislocation damping, C1 and C2)

are used in Equations 13 and 14, and subsequently in Equation 27.

Modeling of these equations is established in Appendix C, step 3.8.

Appendix C is an algorithm for simulating internal damping in prepara-

tion for the mathematical model.
-3

Estimates of material constants are C1 
= 54 x 10 and C2 = 144 x

10 Based on restrictions of the Granato-Lucke equation (Equation 5),

the maximum beam strain during damping data collection is limited to 36

x 10- 6 , that is, one fourth of C From Figure 14, for a simple-supported
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beam vibrating in the fundamental mode, the damping ratio for the maximum

strain is 172 x 10- 6 . This small amount of damping is difficult to mea-

sure accurately, a point that becomes more apparent in the next section,

which documents the analysis of the four-point beam fatigue tests.

Fatigue Tests

The two materials used in the fatigue tests were 1018 and 4340

steel. The 1018 steel beam specimens were fatigued under a constant

load and an increasing stress intensity factor. The 4340 steel beam

specimens were fatigued under a decreasing load and a constant stress

intensity factor.

4340 Steel Beam Fatigue Plots. Four beam specimens were fatigue

tested in a four-point load arrangement. Figures 15 through 18 show the

plotted crack extension, resonant frequency, and damping ratio data for

each of the specimens. The figures share common peaks in damping and

fluctuations of resonant frequency at approximately 300, 270, and 245

Hz. Since the tests were automated, no observations are available to

explain these phenomene in the data. Due to differences in the initial

tightness of the clamping bolts at the knife edges, the beams began their

tests at different resonant frequencies. The specimen crack lengths

also varied from beam to beam at these frequencies. Because of this, it

does not appear that the fluctuations were due to the specimens them-

selves. One possible explanation is that some part of the test equip-

ment or fixture on the MTS test machine resonates at these frequencies.

All four plots indicate a definite increase in damping as the crack

grows. This upward trend in damping is consistent with the increase in

energy losses in metals with propagating cracks as measured by Charles,

Appl, and Francis (Ref 33). Freudenthal (Ref 71), noting the sharp

increase in damping and fracture that ensued, offered the explanation

that the increase is an expression of the formation and spreading of

macroscopic cracks under considerable local deformation.
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Specimen A. Crack extension, resonant frequency, and damping

ratio data are presented in Figure 15 for this first specimen tested.

Fatigue loading was set at 1250 pounds with a resulting K = 26.1 and
1/2 ave

SD = 2.16 ksi-in. , where SD is the standard deviation. Due to a pro-

gramming error in the calculation of Equation 32, the stress intensity

factor was not held constant. A decision was made to fail the specimen

while the crack growth was still being tracked by the crack propagation

gages in order to assess their accuracy. Table 3 summarizes the data at

failure. The crack propagation gage recorded a crack depth of approxi-

mately 0.25 inch at failure, indicating an error on the order of 10 per-

cent. This error is probably associated with the error in measuring the

location of the crack gages on the specimen prior to the start of the

test.

Specimen B. The damping datum was established at a damping
-6

ratio of 460 x 10 and the load was initialized at 1250 pounds. Fatigue

test data are shown in Figure 16. The average stress intensity factor
= 1.7 ks-in.1/2

was 34.4 with SD = 1.37 ksi-in. I /  The average crack growth rate,

(da/dN), over the width of the crack propagation gage was 14.9 x 10-6 .

Specimen C. Figure 17 contains the crack extension, resonant

frequency, and damping ratio data. The damping datum was established at
-6

a damping ratio of 460 x 10 over 50 data cycles. The fatigue load was

initialized at 1250 pounds. K = 30.5 and SD = 1.91 ksi-in.1/ 2 with
crack rowthrateave -

the crack growth rate, (da/dN), at 11.9 x 10-6

Specimen D. The data from the last test are presented in

Figure 18. The damping was established at a damping ratio of 460 x 10-6

and the load was initialized at 1400 pounds. An average stress intensity

factor of 36.3 with a standard deviation of 1.48 ksi-in.1 / 2 was produced.

Over the width of the crack gage the crack propagation rate was 17.0 x
-6

10
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Past experience with crack propagation gages had produced inconsis-

tent results. The adhesive selected to glue the gages to a specimen

often failed, resulting in erratic crack length data. The adhesive used

on the 4340 steel beam specimens proved very reliable and secured crack

length data within 100t h of an inch.

Analysis of Damping Results in 4340 Fatigue Specimens. Results

from the damping tests are applied to the fatigue tests through the esti-

mates of the material-dependent constants of Equation E-3 in Appendix E

and usage of the frequency-dependent damping equation.

The plastic strain in the plastic zone at the fatigue crt:k fip was
-6 ,

estimated at 400 x 10 in./in. for specimens B and C and 500 x 10 for

specimen D. This estimate is based on Equation 17 and assumes a constant

plastic zone size. For fatigue specimens B, C, and D the assumption of

a constant plastic zone size is valid for the period of testing when the

crack length was within the crack propagation gage range. Once outside

of this range, erroneous crack length data were received by the control

program and the applied fatigue load did not preserve a constant stress

intensity factor. This small plastic strain, together with the small

plastic zone radius (on the order of 0.003 inch) suggests a small con-

tribution (on the order of 10- 6) to the overall internal damping by the

dislocations in the plastic zone.

Figures 15 through 18 clearly indicate a significant increase in

the internal damping as each test progressed. However, the cause of

this increase cannot be associated with the dislocation density of the

plastic zone at the fatigue crack as hypothesized. Another mechanism

must be found to explain this phenomenon.

Alternate Damping Mechanism. The damping behavior observed in

Figures 15 through 18 is not consistent with phenomenon associated with

dislocation density in a plastic zone. For a constant plastic zone radius,

this damping should be relatively constant. Damping in all specimens

increased with Increasing crack length, suggesting that damping is related

to the crack length itself. Plots of damping versus maximum beam slope

at the crack (Figures 19 through 21) reveal a straight line. Although
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the slope is different for the three figures, it does suggest that the

cause of the damping is related to the crack length or rotation of the

cracked surface. A relation based on rotation of the beam at the crack

surface has the form:

CI 0 max ( 1/ 2 )

An initial conjecture is that the crack surfaces rub together when the

beam vibrates. Figure 22 models the damping versus beam slope relation.

This model suggests the following boundary equation using a constant,

c ck' multiplying the beam slope velocity to represent the crack surface

dissipation function:

Elw"(1/2) = cck (a) w'(i/2) + k (a) w'(1/2) (39)

This is an empirical relation, adequate for the model in this report,

but requiring additional analysis at some later date.

1018 Steel Beam Fatigue Test Results. Figure 23 is a plot of data

collected from a 1018 steel beam subjected to fatigue loading. The

beam specimen has a shallow increase in damping between 17,500 to 20,000

cycles; however, it is not clear if this change in damping can be attrib-

uted to the fatigue phenomenon or if it is caused by an external effect.

One possibility is that this additional damping is due to the crack

motion, as reflected in Equation 39 and the coefficient cck. A scenario

for this would be that the plastic zone is initially small and the crack

surfaces rub as the beam is vibrated to collect damping data. As the

crack grows and the stress intensity factor increases, the beam forms a

plastic hinge at its midpoint. The plastic hinge permanently opens the

crack, not allowing the surfaces to rub and effectively lowers the damp-

ing ratio. Excluding the damping increase mentioned above, the overall

damping ratio remains roughly constant up to 25,000 cycles, whereupon it

increases sharply.
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Test results of 1018 and 4340 steel specimens demonstrate two dif-

ferent damping phenomenon. Results from the 1018 steel fatigue tests

are consistent with the analytical approach presented previously in this

report. That is, the damping is relatively stable for a small plastic

zone, and increases rapidly with an expanding plastic zone. To validate

the 1018 steel results and analyze the 4340 steel results, the specimens

must be modeled and crack growth and damping phenomena included in the

model. The questions raised in the Experimental Approach section of

this report will be answered after comparing the fatigue test results

with the model output. Completion of the research objectives are

dependent on these answers.

DYNAMIC MATHEMATICAL MODEL

The purpose of the dynamic mathematical model is to answer the

questions posed in the Experimental Approach section of this report.

The model will be used to validate the technical approach through

analysis of the 1018 and 4340 steel fatigue test results. Analysis of

the 4340 steel results will explain, through the model, the steady

increase in damping that cannot be represented by dislocation phenomena.

Beam Models

The two dynamic mathematical models developed to analyze damping

are based on the Euler-Bernoulli beam equation (Ref 72). These models

are viscously damped with the damping based on a dislocation damping

expression, including both strain/amplitude-dependent and frequency-

dependent damping. In addition, the fatigue specimen model simulates

crack growth with a torsional spring, k (a), that is a function of crack

length, a.

Figures 24 and 25 illustrate models of the four-point beam fatigue

and symmetric cantilever beam damping specimens, respectively. In both

figures, m is the mass of the beam per unit length, E is Young's modulus,

h is the beam height, b is the beam thickness, I is the beam length, and

x and z are the beam coordinates. In Figure 24, kke is the torsional
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stiffness of the knife-edge support, k (a) is the torsional stiffness ofC

the fatigue crack (as described above), m is the mass of the exciter,
1 is the distance from the knife-edge support to the exciter, and
ex

F ex(x,t) is the time-dependent forcing function of the exciter. In

Figure 25, wb(t) is the time-dependent acceleration of the base support

for the symmetric cantilever beam.

Symmetric Cantilever Beam Damping Specimen. Appendix F derives the

equation of motion and mass, stiffness, and damping terms for the symmetric

cantilever beam model. Results from the internal damping tests are analyzed

using Equation F-13 from Appendix F. This equation determines the damping

ratio, at resonant frequency, from the beam acceleration and strain.

Four-Point Beam Fatigue Specimen. Appendix G derives the boundary

conditions, equation of motion and mass, stiffness, and damping terms

for the four-point beam fatigue model. Damping data calculations for

the fatigue tests are programmed into the test control computer. These

calculations are based upon Equations F-13 and G-8 in the appendixes.

The following section develops an expression for the frequency-

dependent decrement that must be determined to isolate the fatigue-

induced damping.

Frequency-Dependent Decrement

A simple expression for frequency-dependent decrement, Al. is

provided by Zener (Ref 1, 73) for a beam vibrating in simple harmonic

flexure at a frequency w. According to the Zener thermoelastic theory,

the frequency-dependent decrement for a beam is:

2 221 Ta 2 ET W1 40

1 +wT

where t, the relaxation time for heat flow across a rectangular beam, is

given by:
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i2k
h~c

i2k

and a is the linear expansion coefficient, T is absolute temperature, c

is the specific heat per unit volume, and k is the thermal conductivity.

The decrement given by Equation 40 is maximum at a frequency w = li/t and

falls off gradually to zero for very high and very low frequencies.

Based on data presented in Table 4 (Ref 74), Figure 26 reflects the

relaxation damping decrement of a beam modeled by Equation 40. The

curve of Figure 26 describes a single relaxation mechanism. There are a

number of such mechanisms, each with its own relaxation time, T. Through

linearity, these mechanisms can be superimposed to provide the total

damping decrement (Ref 71).

Comparison of Fatigue Test and Mathematical Model

In summary, the steps used to compute the estimated internal

damping for a four-point beam model undergoing fatigue crack growth are

presented in Table 5. In applying these steps to 1018 steel, the fol-

lowing assumptions were made concerning material constants (refer to

Table 6 for a listing of material-dependent constants): (1) use data

previously collected to estimate constants, (2) if immediate data are

unavailable, use data from literature, and (3) if literature data are

unavailable, estimate from similar materials. Refer to Appendixes C and

D for an application of the steps presented in Table 5.

True stress-strain for 1018 steel is modeled by Equation 34 (Figure

27) with k = 84.2 x 103 psi and n = 0.110. Figure 28 is a plot of thep
output from a computer model depicting a 1018 steel beam subjected to

fatigue loading. The model, outlined in Appendix C with data from Table

6, matches the damping characteristics of the fatigue specimen as the

crack grows. The sharp increase in damping, demonstrated by the speci-

men for a large plastic zone, is also exhibited in the computer generated

model.

Figure 29 is a plot of the results of a computer model depicting a

4340 steel beam subjected to fatigue loading. Data for the computer are

shown in Table 6. This plot is compared with Figure 16. The model has
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a nonzero value for the constant cck. This damping effect allows the

model to accurately reflect the damping conditions of the steel specimen.

Differences are observed at 12,000 and 23,000 cycles where sharp damping

peaks exist in the beam specimen output. An initial impression of these

peaks is that they are due to external causes, as they appear in all the

4340 steel specimens at consistent frequencies.

The mathematical model has many simplifications. The plastic zone

is treated as a square area, where each side is twice the plastic zone

radius in length. This is a simple treatment with room for refinement.

Strain at the crack tip, during damping data collection (Equation 13),

is assumed to be a function of the reduced cross section at the crack,

6M
c (41)

Et(h - a)

This assumption discounts a large stress concentration that occurs at

the crack tip for elastic behavior (Ref 60). The disregard for stress

concentration is deemed acceptable in this instance because the plastic

yielding that occurs within the plastic zone greatly mitigates stress

concentration. To completely ignore the stress concentration is not

realistic, but justifiable for an initial modeling attempt. The ratio

of maximum stress to nominal stress is less than the elastic stress con-

centration factor, and can be interpreted as an elastic-plastic stress

concentration factor, which must be determined experimentally.

CONCLUSIONS

Conclusions about the main objective, that is, the crack

growth/internal damping relationship, and conclusions about the

mathematical model used in the analysis of the damping and fatigue

test results are presented.
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Damping and Fatigue Tests

The major objective to develop a relationship between crack propaga-

tion and internal damping was accomplished. Fatigue tests were conducted

for validation of the relationship. Conclusions based on the test results

are presented and the reliability of the damping measurements made during

the fatigue tests is addressed in the following.

Damping Mechanisms. Observations of fatigue specimens isolated two

distinct damping mechanisms. The first was classified as a dislocation

damping mechanism and was observable in 1018 steel specimens only after

extensive fatigue crack growth under constant load produced a large plas-

tic region. Dislocation damping is well documented (Ref 33 through 43),

and the results of the 1018 steel beam fatigue tests reflect that mecha-

nism. Observation of this mechanism was an objective of the 4340 steel

beam fatigue tests. However, for the 4340 specimens, fatigued under a

constant stress intensity factor, the plastic zone radius was too small

(on the order of 0.003 inch) to furnish a measurable damping increase.

Indeed, any damping increase generated by a plastic zone was obscured by

a second damping mechanism that was observable within a few cycles of

crack initiation. The damping ratio produced by this mechanism is

directly proportional to the maximum beam rotation at the crack loca-

tion. The second damping mechanism was classified as viscous damping

expressed by Equation 39 and was attributed to the rubbing together of

the two crack surfaces as the specimen vibrated.

No explanation is immediately available for the cause of the sharp

peaks appearing in the damping plots of the 4340 steel beam specimens.

Nevertheless, the occurrence of the peaks at consistent frequencies

suggests the source is external to the specimens. This conclusion is

based on the knowledge that each specimen had a different initial

resonant frequency. Knife-edge stiffness is calculated from resonant

frequency, thus all the 4340 beam specimens had different knife-edge

stiffnesses. The crack length and general beam mode shapes are thus

different for each beam at the frequencies where the damping peak

occurs.
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Test Procedures. Results from the symmetric beam damping tests

indicate that the strain gage lead wire contribution to damping is stable

and produces repeatable results that may be treated as an external damping

source. For this reason, lead wire damping is assumed to be part of the

damping datum established for each fatigue test.

Mathematical Model

The mathematical computer model developed to express damping in

materials subject to crack growth is a combination of analytical and

empirical relations. The empirical relations are primarily associated

with the viscous damping observed in the 4340 steel beam specimens.

Deduced as friction between the two crack surfaces, this viscous damping

is repeatable in 4340 steel beam specimens. Another empirical relation,

expressed in Equation 30, is assumed to exist between the torsional stiff-

ness at the crack and the crack length. This relationship closely resem-

bles a moment of inertia expression and gave consistent results for all

four 4340 beam specimens.

The analytical expressions used to model dislocation damping and

plastic strain, that is, Equations 13 and 21, accurately modeled large

damping changes in the 1018 steel specimens. This conclusion reflects

the difficulty in accurately measuring small changes in damping caused

by dislocation damping, while acknowledging the model's credibility for

simulating large damping changes which occurred after many thousands of

fatigue cycles.

RECOMMENDATIONS

Additional testing is required to confirm the mathematical model

and the viscous damping observed in the 4340 beam specimen. Other

materials must be fatigued using both constant load and stress intensity

factor. Greater accuracy is required in the measurement of damping.
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Damping ratios in the 4340 steel beam specimens could be measured to 50
-6 -6

x 10 . Damping changes on the order of 3 x 10 are suggested by the

mathematical model for simulating dislocation multiplication in the

plastic zone.

The mathematical model should be refined to better represent the

plastic zone in a beam. The plastic zone shape, as handled by the model,

is shown in Figure 30. Using a square shape for the plastic zone is a

gross approximation, particularly for the 1018 steel specimens. Under

fatigue loading, the 1018 steel specimens displayed plastic hinges at

the notch location. Figure 31 illustrates a plastic hinge, as observed

in the 1018 steel specimens. The simple simulation used in the mathe-

matical model does not accurately depict the plastic material opposite

the cracked surface. A refinement that accounts for the plastic hinge

effect would directly influence the calculated damping with the plastic

zone and improve the model's accuracy. Along with shape is the question

of strain within the plastic zone during damping data collection. Dis-

location damping is a function of strain, and when the beam is vibrated

to collect damping data, strain within the plastic zone is affected by

both a reduced cross section and plastic flow. The model ignores stress

concentrations at the crack tip on the basis that the concentration is

greatly diminished by the presence of a plastic region (Ref 11). Further

work is required in this area to ascertain what effect each phenomenon

has upon the strain within the plastic zone.

Experimental data should also be collected to determine the elastic-

plastic strain distribution around the notch tip. Equation 41 could

then be refined to include an elastic-plastic stress concentration fac-

tor, reflecting plastic flow at the tip and accurately estimating the

plastic strain in the plastic zone.

Damping has potential as a crack growth monitoring tool where

external damping can be tightly controlled. Isolation from external

effects is possible in a laboratory where conditions are rigidly con-

trolled. Outside a laboratory, changes in external damping will often

overwhelm smaller crack growth induced damping. A technique is needed

to localize or "zoom-in" on crack-induced damping. Examination of
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localized displacements (on the order of 0.5 microns) is possible with

the Sharpe technique (Ref 75). This technique also has the advantage of

eliminating strain gages and their affiliated wires and damping affects.
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LIST OF SYMBOLS

a Linear expansion roefficient and constant

a c Material-dependent, crack growth rate constant

6(x-) Unit impulse or delta function at the location

A Total decrement, AH + AI

A Average specific damping capacity

Ac Average corrected total decrement, Ac + -A
H I

A ext External damping

AH Amplitude-dependent decrement
c

AH Povolo's corrected amplitude-dependent decrement

AH Average amplitude-dependent decrement

-C Average Povolo's corrected amplitude-dependent decrement

AI  Frequency-dependent decrement
-c
AI  Average corrected frequency-dependent decrement

th

Aii Frequency-dependent decrement for the i mode

AK Difference between the maximum and minimum values of the
stress intensity factor during fatigue cycle, Kmax - Kmin

A Internal damping due to plastic strain
p

A0  4(l-v)/v 
2

Aw Energy dissipated per cycle in a volume element

A0  Damping decrement for beam specimen with no sets of
wires removed

A1  Damping decrement with one set of strain gage wires removed

A2  Damping decrement with two sets of strain gage wires removed

A3  Damping decrement with three sets of wires removed

A4  Damping decrement with all strain gage wires removed
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4 th
A4 . Damping decrement of i mode with all wires removed

Aa. Crack growth during j thfatigue cycle
f

C Cottrell misfit factor

a Fatigue cycle elastic strain at maximum load

Emin Fatigue cycle strain at minimum load

EPlastic strain
p

Epi Plastic strain per cycle

th
E pi Plastic strain for j fatigue cycle

EStatic plastic strain fracture value at 1/2 cyclepu

EUltimate strain for static fracture
u

ECritical strain above which plastic strain occursP

EAverage value of the cyclic plastic-strain rangeP

E t ln(Ao/AI), true strain

E(X) Strain in beam at location x

E 0 Cyclic strain amplitude

41 Viscous damping ratio for the i th mode, Ci = C i/Cci

8 Phase angle, 8 -+ 7/2 as w 4 w.1

H Hx/
th

K. Eigenvalue of i mode of vibrating beam

A Total length of movable dislocation line per unit volume
(dislocation density)

A Dislocation density in elastic regione

A Immobile dislocation density

A Dislocation density in plastic zone

V Poisson's ratio

Location of unit impulse function

P Density
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Nominal outer fiber stress

o Maximum cyclic stressa

%. Stress constant
10

a t  P/Ai, true strain

0 Ultimate stress for static fracture
u

o(0) Stress at zero plastic strain

TRelaxation time for heat flow across a beam, T = h 2c/?2 k

*Orientation factor (0.5 and 0.32 for b.c.c. and f.c.c.,
respectively)

th
Oi(x) Characteristic shape function associated with i mode

of vibrating beam

(x) Derivative of it  characteristic shape function with
respect to x, describes slope of beam

(. (x) Second derivative of ith characteristic shape function
with respect to x, describes curvature of beam

X Strain independent probability for the remobilization of

immobile dislocations

1Strength parameter

W Frequency of forcing function

W. Resonant frequency of the i
t h mode, w.i = (Ki/Mi1/2

Wnl Fundamental beam frequency

Orientation factor

a Crack length

a0 Initial crack length

th
a. Crack length after j -1 fatigue cycle
.1i

th
a. Crack length after j fatigue cycle
j

A Dimensionless constant and for the G-L Theory A = wpb
2

A. Instantaneous cross-sectional area under a given loadI

A Original cross-sectional area before any load is applied
0
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A' l/fbKf

A2  Material constant

b Burger's vector and beam thickness

B Material temperature-dependent term

th
B. Amplitude scaling factor associated with i mode of

vibrating beam

b Material constant relating crack length to beam
c torsional stiffness at crack

C Material constant; for the G-L Theory C = 2Gb2 /n(l-v);
and for the Manson-Coffin law, the ductility exponent

C1 QAoLN3/Lc

C2  K& a/Lc

C 3 ~ QA 0L C4 B7 2C3  o4Bw/i2C

th
C. Generalized damping of i mode

th
Cci Generalized critical damping of i mode

c Specific heat per unit volume

cck Crack damping coefficient

Ceq Equivalent viscous damping

c(x) Beam damping coefficient

d Dislocation cell size, d = K/A
1 / 2

dw Plastic energy absorbed per cycle

D% Fatigue life damage assessment in percent, 100% (N c/N fp)

E Young's modulus of beam material

El  Exponential integral function of first order

E Exponential integral function

f Constant of order 1

F(a/b) 1.122 - 1.4(a/b) + 7.33(a/b)
2 - 13.08(a/b)

3 + 14.0(a/b)
4

f Amplitude scaling factor of exciter forcing function

ex
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F ex(X,t) Exciter forcing function

G Shear modulus

h Height of beam

i Mode number

I Moment of inertia of beam, I = th 3/12

j Fatigue cycle number

k Thermal conductivity; for Manson-Coffin law, 1/C

K Orientation and anisotropy parameter and material
constant, K = 20 for Fe

K Average stress intensity factor over fatigue testave

k (a) Torsional spring stiffness of crackc
th

K. Generalized stiffness of i mode

K Stress intensity factor

Kic Critical stress intensity factor

kke Torsional spring stiffness of knife-edge support

K Maximum value of stress intensity factor during fatigue cyclemax

Kmin Minimum value of stress intensity factor during fatigue cycle

k Strength coefficientp

I Length of beam

1, Mobile dislocation density

I a  Fatigue specimen distance from knife edge to loading point

I, Impurities loop lengthc

Ie Effective length of dislocation loope

1 Distance from knife-edge support to exciterex

TF Fraction of fatigue life expended

11N  Network loop length

m Hysteresis energy exponernt
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M Moment on beam section

M Moment due to crack
c

MI Generalized mass of it h mode

Mke Moment due to knife-edge support

m(x) Mass per unit length of beam

M(x) Moment along beam, M(x) = EI B. *i.(x)

n Strain hardening exponent

N Fatigue cycle number

N Number of fatigue cycles completed
c

Nf Number of cycles to complete fracture

Nf Predicted number of cycles to complete fracture

N* Number of cycles in a stage of fatigue life

P Fatigue or static load

th
qi Generalized coordinate of i mode

qi First derivative of generalized coordinate with respect
to time

Second derivative of generalized coordinate with respect
to time

R. Characteristic shape function ratio of nonzero constants
I

r Plastic zone radius
p
s Dislocation mean free path

SD Standard deviation

t Time variable or thickness of beam

T Absolute temperature

TF Transfer function amplitude ratio at wn1

U Integrated plastic work expended in the plastic zone or
peak potential energy per cycle

U Rate of immobilization of mobil, hdislocations or peak
potential energy per cycle of I mode

V Specimen volume



V Elastic region volumee

V Plastic zone volume
p

W Amplitude scaling factor for beam support displacement

w b(t) Time-dependent displacement of beam support

W b(t) Time-dependent acceleration of beam support

Wd Energy dissipated per cycle

th
Wdi Energy dissipated per cycle of i mode

Wf Total hysteresis energy to cyclic failure

W Total hysteresis energy to static failureu

w(x,t) Time- and location-dependent displacement of beam

w(x,t) Time- and location-dependent velocity of beam

w(x,t) Time- and location-dependent acceleration of beam

w'(x,t) Derivative of w(x,t) with respect to x

w"(x,t) Second derivative of w(x,t) with respect to x

w'"(x,t) Third derivative of w(x,t) with respect to x

w Peak potential energy per cycle in a volume element

x Coordinate of longitudinal axis of beam

x Known location on beam

zi(t) Forcing function for generalized coordinate equation of
motion

.th

zM(t) Displacement function for i generalized coordinate
equation of motion

Z i  Avlitude scaling factor for displacement function of
i mode
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Table 1. Characteristics of SAE 4340 Steel

Item Description

Material SAE 4340 Steel

Composition C - 0.40, Mn - 0.81, P - 0.018,

S - 0.019, Si - 0.25, Ni - 1.73,

Cr - 0.87, Mo - 0.24

Heat Treatment The fatigue, tension, compact tension and

damping specimens were austenitized at

1525 0 F in a neutral salt bath, quenched
in still oil and room temperature and

tempered at 1100°F for 2 hours.

Engineering

Tensile Properties Average tensile properties for three

specimens are given below:

Engineering 0.2% offset,

yield strength (psi) - 141,300

Engineering ultimate
strength (psi) - 150,200

Hardness Rockwell C - 37

Table 2. Summary of Static Test Results

Pnrameters Units Values

S
psi 225,000

in./in. 0.748Pu
3

W lb-in./in. (Equation 37) 153,800
11

W l- in. /in. 3 u, l 3A) 1 4,005
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Table 3. Fatigue Specimens at Failure

Load at Failure, Crack Length Estimated Outer Estimated Stress
Specimen La a lu rak (n Fiber Stress, Intensity Fa r,P (ib) a (in.) a (ksi) KI (ksi-in.

A 1240 0.277 50.1 80.3

B 690 0.393 14.4 71.2

C 260 0.413 11.1 78.6

D 345 0.402 11.5 90.1

Table 4. Values Used in Equation 40 to Obtain
the Curve Shown in Figure 26
(Ref 74) for Steel

Parameters Units Values

a strain/F 6.7 x 10

E psi 29 x 10
6

c psi/OF 245

k lb/sec OF 6.5

h in. 0.125

T OR 530
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Table 5. Computation of Internal Damping in Fatigue Model

Step Drescription

1 Define material and crack growth constants

2 Repeat step 2 for fatigue cycle j = I to N

2.1 Using the crack growth constant, ac, and crack length from
the previous fatigue cycle, aJ_ 1, compute the crack length
for the current fatigue cycle a. (Equations 31 and G-10)

2.2 From known values of the static plastic strain fracture
value, E , the final crack length, af, and the ductility
exponentMu, compute the estimeted plastic strain, e *in
the current fatigue cycle (Equation 30)

2.3 Compute the fraction of fatigue life expended, LF
(Equation 29)

2.4 Determine the plastic zone radius, rj for the current
fatigue cycle (Equation 11 or 12)'

2.5 Calculate the crack torsional stiffness, k ., for the
current fatigue cycle (Equation G-12) cj

2.6 With the knife-edge stiffness, k, , determine the
eigenvalue, K , eigenvector, 41(x , and resonant fre-
quency, w1 , ol the fundamental mode of vibration
(Equation G-4)

2.7 Determine amplitude scaling factor, B Ij (Equation F-8)

2.8 Calculate plastic zone dislocation density (Equation 21)

2.9 Compute the average amplitude-dependent damping, cx, from
the vibration strain level, E0 (Equation 13)

2.10 Determine the frequency-dependent damping, Aj (Equation
F-16)

3 stop.
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Table 6. Material-Dependent Constants for 1018 and 4340 Steel

Constant Description Units 1018 4340

A i  Dislocation density to plastic disl/in.2  2.41 x 106 6.13 x 106
strain coefficient

b Crack length to beam torsional lb/in. 124 x 103 124 x 103
stiffness coefficienit

-3 -3
C Manson-Coffin ductility exponent 646 x 10 690 x 10

-3 -3
C 1  Internal damping coefficient 50 x 10 50 x 10

-6 -6
C 2  Internal damping coefficient in./in. 150 x 10 100 x 10

c Specific heat per unit volume psi/°F 245 245

El Young's modulus x beam moment lb/in. 2  300 x 103 300 x 103

of inertia

k Thermal conductivity 6.5 6.5

a Expansion coefficient in./in.°F 6.7 x 10-6  6.7 x 10-6

a Crack growth rate coefficient in. 7/lb - 16 x 10- 24  9.66 x 10-2 4

cycle

-3 -3
Static plastic fracture value in./in. 550 x 10 748 x 10
at 1/2 cycle

A0  Dislocation density for plastic disl/in. 2  1 x 10 1 x 108

strain equal to zero

a Yield stress psi 62 x 103 144 x 103

X Strain independent probability 10.7 8.61
for the remobilization of
immobile dislocations
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Figure 1. Edge dislocation.
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Figure 3. Formation of a microcrack by a combination of (three)

dislocations (from Yokobori, Ref 11).
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Figure 4. Granato-Lucke plot of a 1018 steel cantilever beam.
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Figure 8. Successive stages of ductile

failure (from Blauel, Ref 12).
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Appendix A

FATIGUE TEST PROCEDURE

This appendix presents a detailed description of the procedure used

to fatigue test 1018 and 4340 steel beam specimens.

TEST EQUIPMENT

Table A-I contains a list of equipment used in the fatigue test.

Refer to Figure 9 in the main text of this report for a general arrange-

ment of the equipment listed in Table A-i.

A vibration generator excites a fatigue specimen to collect strain

and force data used in the calculation of internal damping for the beam.

An impedance head located between the vibration generator and specimen

provides the force data for the damping calculation. Three strain gages

are attached to the specimen (see Figure 10). These gages provide strain

measurements during fatigue loading and vibration generator excitation.

The specimen is vibrated at a frequency selected via computer control on

the frequency synthesizer. The frequency synthesizer output signal is

boosted by a power amplifier to provide strains of measurable amplitude.

The Lab-Datax Computer controls the fatigue load of the MTS test

machine and performs the calculations to determine internal damping.

Crack propagation gages connected to an analog to digital port on the

computer monitor the fatigue crack length that the computer uses to

maintain a constant stress intensity factor. The computer also controls

the number of fatigue cycles between damping data cycles and the frequency

range selected on the frequency synthesizer.
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Table A-1. Fatigue Test Equipment

1 - Data Translation Lab-Datax Computer w/Hard Disk Drive, D/A
Converter, and A/D Converter

1 - Scientific Atlanta Model SD375 Spectrum Analyzer

1 - Wilcoxon Research Model F5B Vibration Generator

1 - Wilcoxon Research Model Z12 Impedance Head

1 - Accelerometer - Force Amplifier Unit

1 - Validyne Model MC1-3 Amplifier Enclosure

2 - Validyne Model SG71 Strain Gage Amplifier

1 - Hewlett Packard Model 3325A Frequency Synthesizer

1 - Hewlett Packard Model 3495A Scanner w/Optional 001 Relay
Assembly

1 - Hewlett Packard Model 467A Power Amplifier

1 - MTS Test Machine

2 - Micro-Measurements Model TK-09-CPA01-005 Crack Propagation
Gage

3 - Micro-Measurements Model EA-06-125BZ-350 Strain Gage

The spectrum analyzer collects strain and force data and converts

them to a transfer function ratio. The transfer function is transferred

to the computer where the damping calculation is made and the frequency

range selection is updated. Strain input to the spectrum analyzer is

under computer control with the switching function handled by the scanner.

SPECIMENS

The 1018 or 4340 steel beam specimen, shown in Figure 10, is mounted

in the MTS test machine using a knife-edge support fixture. The specimen

is initially uncracked, with a small notch at its midpoint. A four-point

load is applied to the beam by the hydraulic ram of the MTS test machine.
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The initial fatigue load, ranging from 1,250 to 1,400 pounds for the

four specimens tested, produce a maximum stress in the notch of 160 ksi
1/2and a maximum stress intensity factor of 36 ksi-in.

For the heat treatment used, the 4340 steel has a yield strength
1/2of 141 ksi and a critical stress intensity factor of 77 ksi-in.

With the specimen fatigued at a constant stress intensity factor, the

maximum plastic radius is estimated at 3.5 x 10- inches, as calculated

from Equation 12 in the main text of this report.

The 1018 steel was untreated, having a yield strength of 62 ksi.

The 1018 steel is too soft to obtain a valid critical stress intensity

factor and no attempt was made to determine one. At 800 pounds, the

uncracked specimen has a maximum plastic radius estimated at 7.2 x 103

inches, as calculated from Equation 12.

TEST PROCEDURE

After mounting the specimen in the fixture on the MTS test machine,

the Lab-Datax computer program is initialized. The initialization pro-

cess sets the number of fatigue cycles, crack gage parameters,and exciter

frequency range. After initializing the system, 2,000 load cycles, 100

pounds each, are applied to the beam specimen. This series of load cycles

is used to establish a damping datum for the uncracked specimen.

For each load cycle, maximum strain and load are saved on disk by

the computer. After each set of forty load cycles, the computer program

executes a damping data cycle. A damping data cycle begins when the

frequency synthesizer is set to sweep a range of frequencies starting 10

Hz below and ending 10 Hz above the fundamental resonant frequency of

the specimen. As the vibration generator sweeps the frequency range,

exciting the specimen, strain gage and force transducer data are trans-

ferred to the spectrum analyzer. These data are transformed into a

transfer function consisting of two components: real and imaginary.

Data from the real component of the strain-force transfer function are

interpreted in terms of the phase shift between the input forcing func-

tion and output strain. The damping ratio, C, may be calculated from
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the real component after determining the frequencies of minimum and

maximum magnitudes, f1 and f2, respectively, using the following for-

mula,

2 2 
(A-1)

2(f2 + f1 )

Equation A-1 was not used for calculating the damping ratio within the

computer program because the term f 22 f12 is a small difference between
large numbers and has poor accuracy.

A better technique for measuring damping, during steady-state vibra-

tion, is to measure the maximum amplitude of the imaginary component of

the transfer function, TF lmax . Inverting TFlImax and dividing by two

is the equivalent of Equation F-13 in Appendix F, which is equal to the
damping ratio. TFi,max occurs .at the resonant frequency of the beam,

f . Steady-state vibration was selected instead of using a ring-downr
technique because the damping ratio changes with vibration amplitude as

the specimen rings down.

A correction factor must be included in the TFi,max calculation.

The spectrum analyzer collects data while the synthesizer sweeps discrete

frequencies, resulting in an averaged transfer function, rather than the

true value at each discrete frequency. The correction factor is the

inverse of the number of data sets collected per frequency sweep.

After establishing the damping datum, the computer applies the

full fatigue load to the specimen. As before, the fatigue load is

cycled forty times between damping data collection cycles. During the

load cycle, crack length measurements are made, and the fatigue load is

adjusted to maintain a constant stress intensity factor. This procedure

continues until the crack passes beyond the crack propagation gages. At

this point, feedback from the crack propagation gages indicates a constant

crack length and the system produces a constant fatigue load through the

remainder of the test.
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NOISE

The principal sources of noise in the fatigue and damping tests are

fluorescent lights and electomagnetic fields from vibration generators.

In the case of fluorescent lights, the spectrum analyzer filters out the

noise occurring at 60 and 120 Hz. For the vibration generators, tests

showed there were electomagnetic effects only when the strain gage wires

were in direct contact with the generator. During the fatigue and damping

tests, care was taken to assure that the strain gage wires never came

into direct contact with a vibration generator.
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Appendix B

DAMPING TEST PROCEIRE

This appendix describes the procedure used to collect damping data

from 4340 steel symmetrical cantilever beam specimens.

TEST EQUIPMENT

Table B-I contains a list of the equipment used to conduct the

damping tests. Refer to Figure 11 in the main text of this report for a

schematic of the test equipment.

Table B-I. Damping Test Equipment

1 - Scientific Atlanta Model SD375 Spectrum Analyzer

1 - Validyne Model MCI-3 Amplifier Enclosure

2 - Validyne Model SG71 Strain Gage Amplifier

1 - Hewlett Packard Model 3325A Frequency Synthesizer

1 - Hewlett Packard Model 467A Power Amplifier

1 - MB Electronics Model PM-50 Shaketable

4 - Micro-Measurements Model EA-06-125BZ-350 Strain Gage

The frequency synthesizer is set to operate the shaketable at the

resonant frequency of the symmetric cantilever beam damping specimen.

Output from a strain gage and accelerometer are transmitted to the

spectrum analyzer where the data are transformed into a transfer
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function. The amplitude of the transfer function is read from the

analyzer and converted to a damping ratio using Equation F-13 in

Appendix F.

Amplitude of vibration is adjusted through the power amplifier.

At each setting, the maximum cyclic strain is read from the spectrum

analyzer.

SPECIMEN

Figure 12 in the main text illustrates the symmetric cantilever

beam specimen used in the damping tests. The beam material is 4340

steel that has been heat treated to 150 ksi yield strength.

TEST PROCEDURE

A damping specimen is mounted on the shaketable. The amplitude of

vibration is initialized to a low level and the frequency synthesizer is

adjusted to the fundamental resonant frequency of the specimen, fr'

From the spectrum analyzer, the amplitudes of maximum cyclic strain, cO,

and acceleration, a0, are read. The ratio of a0 to E0 is a transfer

function. To pinpoint the exact resonant frequency and its associated

damping ratio, strain and acceleration data are collected from frequencies

0.05 Hz above and below f . Interpolation is used on these three datar

points to compute the beam's damping ratio. The damping interpolation

process is based on fitting the three data points to a curve generated

by Equation F-lI.

The above procedure is repeated for the second and third modes of

the specimen. Having completed the damping data collection for the first

three modes of the specimen, at the selected strain levels, the amplitude

of vibration is increased and the procedure repeated.
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Appendix C

ALGORITHM FOR MODELING INTERNAL DAMPING FROM CRACK GROWTH

The internal damping of a beam undergoing fatigue crack growth is
calculated based on an estimation of the plastic zone size and material
dependent constants related to crack growth rate and internal damping.
The following algorithm is used to calculate the internal damping of a
four-point beam with a propagating crack.

STEP i. Input material and crack growth constants

a0 Initial crack length (in.)

Ai  Dislocation density coefficient (disl/in. )

af Final crack length (in.)

a Linear expansion coefficient (in./in./0 F)

b Material constant relating crack length to
c torsional stiffness (lb-in.)

C Manson-Coffin ductility exponent

C1  Internal damping coefficient

C2  Internal damping coefficient (in./in.)

c Specific heat per unit volume (psi/OF)

X Straineindependent probability for the
remobilization of immobile dislocations

E Young's modulus (psi)

El Young's modulus x moment of inertia (lb-in. )

C Static plastic fracture value at 1/2 cycle
pu (in./in.)

E 0  Maximum strain in beam during damping data
collection (in./in.)

a Crack growth rate constant based on dislocation

theory of crack growth (in. 7/lb 4cycle)
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h Beam height (in.)

k Thermal conductivity (lb/sec-0 F)

kke Torsional stiffness at knife-edge support
(lb-in.)

1 Location of exciter relative to knife-edge
ex support (in.)

1 Location of load relative to knife-edge
a support (in.)

2
A0  Dislocation density for E = 0 (disl/in. )

0 p

m Mass of beam per unit length (slug/in.)

m Mass of exciter and counterweight (slug)

P Fatigue load applied to beam (lb)

a Yield stress (psi)
y

STEP 2. Initialize variables

LF = 0., life expended variable

a old = a0, crack length

j = 1, fatigue cycle counter

=h~c
2 relaxation time for heat flow
T2k

STEP 3. while (a <= aold af)

STEP 3.1 Calculate crack length for current cycle based on

a new da _

aoil K1 4(a) c

Begin by calculating the stress intensity factor
using an empirical formula

2 3 4
f(a/h) = 1.122 - 1.4(a/h) + 7.33(a/h) - 13.08(a/h) + 14.0(a/h)

or
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f(a/h) tan(,) 
1/ 2 0.923 + 0.199(1 - sin*)

4

XVI COSI

where = ira

k = b (h/a)3  torsional stiffness at crackc c

Rotation of beam at knife-edge support

(2E1 + lakc) 1a P
8=-a

;El (kke + kC )

Nominal bending moment between load points

M =1/2 1 P - e0,nom a ke

6M
nom

nom h 2 nominal bending stressnm h2

K I = o Ii-a f(a/h), stress intensity factor.I nom

0
STEP 3.1.1 Assume a value for a

new

STEP 3.1.2 Use Newton-Raphson Iteration for the ith

iteration of a
new

(anew da

R = aold a ac' residual amount

aold K (a)

1
R i , slope of function

K1(new

a i+l = a i - R/R', i+st iteration of a .anew new new

Step 3.1 requires numerical integration and Newton-Raphson

iteration. This case has one equation and one unknown and

should not require extensive computing.

STEP 3.2 Sum the new value of life expended

Aa = a new- a old' incremental crack growth

C-3



S E (A ! , plastic strain
pPu a

LF += -P- specimen is loaded on upstroke only
pu

STEP 3.3 Compute new plastic zone size

(K(anew))20 6

STEP 3.4 Calculate new torsional stiffness at crack

3
k = b (h/a).c c

FTEP 3.5 Compute beam fundamental mode characteristics
including eigenvalue, K; eigenvector, O(x); and resonant
frequency, w. The six unknowns, r; four from O(x): A, B,
C, and D; and w, are computed from the four boundary
conditions:

w(O) = 0, deflection at knife edge is
zero

EIw"(0) = kkeW'(0) ,  moment at knife edge is equal
to the torsional stiffness x
slope

EIw"(1/2) = k w'(1/2), moment at crack is equal to

the torsional stiffness x

slope

w1 (1/2) = 0, shear at crack is zero.

Frequency equation (ignoring the small amount of damping):

W 2M I- K = 0,
i Ki=O

where

Kt  f EI[ ¢I"(x)] dx,
0

and

t 02 (x)m(x) dx + 2 (1ex)mex*
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Step 3.5 requires Newton-Raphson iteration to solve the six
nonlinear equations for the six unknowns. In addition,
numerical integration is needed to calculate the generalized
mass and stiffness. For the initial cycle, this is a time
consuming process and will require 50 to 100 iterations.
Subsequent cycles should have sufficiently small changes in
the variables to require less than ten iterations.

STEP 3.6 Determine amplitude scaling factor

2E

B=-- 
2

hK2 0"(1/2)

O(x) = B O(x), scale eigenvector accordingly.

STEP 3.7 Calculate plastic zone dislocation density

U.
Ap = X [1 - exp(-I/2XE p) + Aoexp(-i/2Xp

STEP 3.8 Compute average amplitude-dependent damping ratio

S= A fE (,)dV + Af 2 dV

H e e H p p H~~

Step 3.8 has several numerical integration computations and
computes the exponential integral function inside an
integral. This is a time consuming process and, along with
step 3.5, will determine the overall program runtime.

S1EP 3.9 Compute frequency-dependent damping ratio

A 21Ta 2 ET wT
I cA 2 2

STEP 3.10 Sum average amplitude- and frequency-dependent
damping

A=AH +lA

STEP 3.11 Output results for (j % 100) = 0

Fatigue cycle number, j

Fatigue crack length, a
new
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Stress intensity factor, KI

Torsional stiffness at crack, kc

Fraction of life expended, LF

Plastic zone size, rP

Plastic zone strain, Ep

Resonant frequency, w

Average amplitude-dependent damping ratio, AH

Frequency-dependent damping ratio, AI

Total damping ratio,

STEP 3.12 Increment fatigue cycle counter

j++
a old a n reset crack length variable.al anew'

STEP 4. stop
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MATHEMATICAL COMPUTER MODEL LISTING
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/* <p> d:\Lc\header\ */

NAME

ckp_crck.exe ............... calculate internal damping for a beam

undergoing fatigue crack growth

SYNOPSIS

dmp_crck <data fiLename> [data plot filename] execute program

dmp_crck with input data provided via a

data file

data filename file containing input data of beam and

material characteristics

data plot filename file containing output data for DISSPLA
plots on PRIME

DESCRIPTION

The internal damping of a beam undergoing fatigue crack growth is
calculated based on an estimation of the plastic zone size and
material dependent constants related to crack growth rate and

internal damping. The following algorithm is used to calculate

the internal damping of a four-point beam with a propagating
crack.

STEP 1. Input material and crack growth constants

a 0 = initial crack length (in).
a dist = dislocation density coefficient (dist/in-2).
a final = final crack length (in).
alpha = Linear expansion coefficient (in/in/xF).
b crack = material constant reLating crack length to

torsional stiffness Lb-in).
c = Manson-Coffin ductility exponent.

c 1 = internal damping coefficient.
c 2 = internal damping coefficient (in/in).
c heat = specific heat per unit volume (psi/xF)

chi = strain independent probability for the
remobilization of immobile dislocations.

deltaext = damping ratio due to external source

e = Young's modulus (psi).
ei = Young's modulus x moment of inertia (lb-in'2).
n max = maximum strain in beam during damping data

collection (in/in).
n ult = static plastic fracture value at 1/2 cycle

(in/in).

g check = minimum crack growth before updating
eigenvector results (in).

growthrate = crack growth rate constant based on
dislocation theory of crack growth
(in'7/tb4-cycLe).

h = beam height Cin).
k = thermal conductivity (Lb/sec-xF)

k_knifeedge = torsional stiffness at knife-edge support

(lb-in).
t = beam length
lambda 0 = dislocatin density for n-p = 0 (dist/in^2).
t exciter = location of exciter relative to knife-edge

support (in).
Iload = location of load relative to knife-edge

support (in).
m_beam = mass of beam per unit length (stug/inch).
m exciter = mass of exciter and counterweight (slug).
p = fatigue load applied to beam (lib).
e_yield = yield stress (psi).
slope_factor = constant relating beam slope and damping.
temperature = ambient temperature of specimen (xF)
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STEP 2. Initialize variables

a-old = aO- crack length
j = 1 fatigue cycle counter

life = 0. life expended variable
tau =h^2*c heat/c'2*k relaxation parameter

STEP 3. while a-last <= a-final

STEP 3.1 Calculate crack Length for current cycle based onfa_new
aod(da/kiV4) = growth-rate.

Begin by calculating the stress intensity factor
using an emp~irical forrmula

f(a/h) = 1.122 - 1.4*(alh) + 7.33*(alh)'2
13.08*(a/h)'3 + 14*(a/h)Y4,

or

f(a/h) = dsqrt(tan(psi)/psi)*
(.923 + .199*(1 - sin(psi))'4/cos(psi),

where psi = c*aI(2*h)

k crack = b crack*(h/a)^3 torsional stiffness
at crack

Rotation of beam at knife-edge support

theta = (2*ei + L -load*k-crack)*l_load*p/
(t*ei*(k-knife-edge + k-crack)

Nominal bending moment between load points

moment = .5*1 load~p - kknifeedge*theta
e-nominaL = 6;moment/h'2 nominal bending stress
ki = e-nominaL*dsqrt(c*a)*f(a/h) stress intensity

factor

STEP 3.1.1 Assume a value for afiH]0

STEP 3.1.2 Use Newton-Raphson Interation with
ra new(i-1]

residual = Iaot (da/(ki(a))Y4) - growth_rate,

slope =1/(ki(a_newti-1])Y'4,

a-newi = a-otdti-1J - residuat/slope.

This step requires numnerical integration and Newton-Raphson
iteration. This case has one equation and one unknown and should
not require extensive computing.

STEP 3.2 Sum the new value of life expended

delta-a = a-new - a-old incremental crack growth
n-p = n-ult*(a -new/a-final)'c plastic strain
life += 2*n p/n-utt include 2 only if loading occurs on

both up and down stroke of piston

STEP 3.3 Compute new plastic zone size

r-plastic = (ki/eyietd)'2/(c*6),
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where ki is computed from anew.

STEP 3.4 Calculate new torsional stiffness at crack

k-crack = b.crack*(h/anew)-3

STEP 3.5 Compute beam fundamental mode characteristics
including eigenvatue, kappa, eigenvector, phi(x), and
resonant frequency, omega. The six unknowns, kappa, four
from phi(x) and omega, are computed from the four boundary
conditions:

W(O) = 0 deflection at knife edge is zero
ei*wh(O) = k-knifeedge*w'(O) moment at knife-edge is

equal to the torsional
stiffness x slope

ei*w"(L/2) = k crack*wI(t/2) moment at crack is equal
to the torsional stiffness
x slope

w"'(t/2) = 0 shear at crack is zero

Frequency equation (ignoring the small amount of damping):

omega^2*mgeneral - k_general = 0

where

mgenerat = J mbeam*phi(x)^2 dx + phil(lexciter)'2*mexciter
and

k_general = J0 ei[phi"(x)]2 dx.

This step requires Newton-Raphson iteration to solve the six
nonlinear equations for the six unknowns. in addition, numerical
integration is needed to calculate the generalized mass and
stiffness. For the initial cycle, this is a time consuming
process and wilt require 50 to 100 iterations. Subsequent cycles
should have sufficiently small changes in the variables to require
less than ten iterations.

STEP 3.6 Determine amplitude scaling factor

scale factor = 2*nmax/(h*kappa'2*phi"(L/2))
ph;i(x = score-factor*phi(x) scale eigenvector accordingly

STEP 3.7 Calculate plastic zone dislocation density

tandap = ( (a_disl/chi)*(1-exp(.5*chi*n_p) +
dsqrt(lambda_O)*exp(.5*chi*np) )'2

STEP 3.8 Compute average amplitude-dependent damping ratio

detta-h = (taibdap*Jpn(x,z)-2*thetah(n(x,z)) dV +

lambdaO*Jen(xz)'2*thetah(nx,z)) dv )/

J n(x,z)-2 dV

where the functions n(x,z) and theta_h(n(x,z)) are defined by
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n(x,z) = z*scale_factor*kappa'2*phi"(x)

theta h(n(xz)) = c_l*(c_2/n(x,z))'2*eil(c_2/n(x,z))

and eli() is the exponential integral function.

This step has several numerical integration computations and
computes the exponential integral function inside an integral.
This is a time consuming process and along with step 3.6 will
determine the overall program runtime.

STEP 3.9 Compite frequency dependent damping ratio

detta i = (2*c*atpha-2*e*temperature)/cheat*
omega*tau/(1 + (omega*tau)-2)

STEP 3.10 Sum average amplitude- and frequency dependent
damping

delta = dettai + delta h

STEP 3.11 Output results for j%100 == 0:

fatigue cycle number, j
fatigue crack length, a new
stress intensity factor, ki
torsional stiffness at crack, k crack
fraction of life expended, life
plastic zone size, r_plastic
plastic zone strain, n_p
resonant frequency, omega
average amplitude-dependent damping ratio, detta_h
frequency dependent damping ratio, delta i
total damping ratio, delta

STEP 4. stop

FUNCTIONS USED

beammode .................. compute beam eigenvector, eigenvalue
and frequency

crackintegral ............. compute crack length residual
d modal .................... derivative of beam characteristic

equation coefficients
dadn ...................... change in crack length as a function of

fatigue cycle numiber
data_plot .................. output to file data for DISSPLA plot
dataprint ................. output to screen data printout
ddphi ...................... second derivative of beam

characteristic equation with respect
to the beam coordinate

dexp ....................... Lattice SSP exponential function
dsqrt ...................... Lattice SSP square root function
ezb_.limit .................. starting limit for second integration

of multiple integration
eze limit .................. ending limit for second integration of

multiple integration
strain2 .................... strain squared function
n2 theta h ................. strain squared, amplitude dependent

damping function
f .......................... stress intensity factor empirical

formula for pure bending
get data ................... input material date from file
inputprint ................ print input data to screen
ki ......................... stress intensity factor
mat-assign ................. MATRIX structure assignment function
modal ...................... beam characteristic equation

coefficients
multi aL ................... multiple integral algorithm
newtonraphson ............. solves nonlinear equation using Newton-
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Raphson algorithm
phi ........................ beam characteristic equation
phi2 ....................... square of beam characteristic equation
power ...................... Lattice SSP power function
pzb timit .................. starting Limit for second integration

of multiple integration
pze Limit .................. ending limit for second integration of

multiple integration
simpson .................... numerical integration using Simpson's

rule
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AUTHOR: Rick Jones
VERSION: 1.0
DATE: 11 AUG 1987

#include <stdio.h>
#include <math.h>
#include <numeric.h>
#include <storage.h>

#define cube(x) ((x)*(x)*(x)) /* cube function */

#define sqr(x) ((x)*(x)) /* square function */
#define quad(x) sqr(x)*sqr(x) /* fourth power function */
#define PVERSION "1.0" /* program version number */
#define PDATE "11 AUG 1987" /* program date */
/* program title */
#define PTITLE "Internal damping vs. crack propagation model"
#define MAX INT 6 /* number of integers input from file */
#define MAXREAL 36 /* number of reals input from file */

unsigned _STACK 4096; /* stack size */

main( argc, argv )
int argc;
char *argv];
(

double a_O, adisl, afinal, a_new, aold, b crack, c, c_1, c_2, c_heat;
double chi, delta, delta_crack, deltaext, deltah, deltai, depth, e;
double ei, gcheck, glast, gen mass, growth rate, h, k, kappa, kcrack;
double k_knifeedge, 1, lambda_0, lambdap, Iexciter, life, Iload;
double mbeam, m-exciter, moment, omega, p, rplastic, sif, slopefactor;
double tau, temperature, theta, toter;
double alpha, n max, n-p, nult, enominal, eyield;

/* double arrays */
double crack[9], ez_limit[2], inputreal[MAXREAL], mode_data[8];
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double phi data[51, plotpak[7], printpak(12], pz limit[2], theta_hi7];
double thetap[T7);

/* double functions */
double crack integral(), da-dno) ddphio, dexpo, dphio, dsqrto;
double ezbltimito, eze_timito, fo, kio, muttial();
double newton raphsono, powero, pzb limito, pzelimito, simpsono;
double strain(), strain2(), n2 theta h(), phio, phi2();

DSUPPLD afun, da fun, e-begin, e_end, efun, pbegin, p end, p-fun;
D SUPPLD n begin, n-end, nfun, h_fun;
FTLE *fl, *f2;
FILE *fopeno;
int datarate, i, j, m, maxum, n;
int inputint(MAX_INT];
int data.ptoto, fcloseo, get datao;
MATRIX mode;
MATRIX beam modeo, d-modaLO, matassigno, modal();
NSUPPLD m -fun, da fun;
unsigned int istypesif, is_ptot_file;
void dataprinto, inputjprinto;

printf( " Title: s\n", PTITLE );
printf( " version: %s\n", PVERSION );
printf( " Date: Xs\n\n", PDATE );

/* check for data file in command line */
if( ( argc < 2 ) 11 ( argc > 3 ) ) ( /* invalid number of data files *I

printf( " \n Usage: programname filename [output filename]" );
exit( 1 );

)

/* open data file 'I
if( ( fl = fopen( argv1], "r" ) ) NULL ) (

printf( " Cannot open .s\n", argv[1] );
exit( 1 );

)

/* make or overwrite output file */
is_plot fite = FALSE; /* do not output to file */
if ( argc == 3 ) (

if ( ( f2 = fopen( argv[2], "w" ) ) == NULL ) (
printf( " Cannot open Xs\n", argvE2] );
exit( 1 );
)

else (
is_plot file = TRUE; /* output to file '1
printf( " Creating data output file Xs\n\n", argv[2] );

)

/* STEP 1. Input material and crack growth constants

in addition to material and crack growth constants, the following
program control data must also be input:

data ate = number of fatigue cycles between data output
is typesif = 0 for constant toad

1 for constant stress intensity factor
= initial cycle number

m = number of subintervals for integration
maxum = number of iteration cycles
n = number of subintervals for second integration
toter = accuracy toterance for Newton-Raphson iteration */

if ( getdata( fl, inputint, input real ) ) (
printf( " Error in data input from %s\n", argvll] );
exit( 1 );

D-8



if Cfclose( fl ) * finished with input file h

printf( "Error in closing input data file Xs\n", argv1)
exit( 1I) /* could not close data file *

/* print input data to screen '
inputprint( input int, input real )

1* set constants from input file *
aO-0 input_real(0];
a -disl = input reatl;
a final = input reatE23;
alpha = input reaL[3];
b-crack = input reaL (4];
c = input real(5];
ci= input_real (6];
c_2 = input reat(7];
c heat = input real (8];
chi = input_real (9];
data -rate = input nt (0];
delta ext = input real (10];
e = input reaL[11];
ei = input reaIE12];
n_max = input real (13];
n-uLt =input reatE141;
gcheck = input real (15];
growth rate = input real (16];
h = input reaM1];
is type sif = input intl];

i = input int(2];
k = input real (18];
k -knife-edge = input reaL[19];

I = input real [20];
t _ exciter = input real (21];
t load = input real(22];
I antda-0 = input real (231;
m = input int3;
maxun = i nputj nt [4];
m-beam = input real (24];
mexciter = input real (25];
n = i nputi intE51];
p = input reat[26];
eyield = input reat[27];
slope factor = input real (28];
temp~erature =input real (29];
toter =inpt treal (30];

/* STEP 2. Initialize variables h

a old = a_0; /* crack Length *
depth = 0.5; /* plastic zone depth factor ~
gLast = 0.; /* eigenvector update parameter h
Life = 0.; /* Life expended variable */
phi -data[41 = 1.; /* assumec an initial scale factor of 1I*
tau = sqr( hIPI )*c heat/k; /* relaxation constant *i
mode = mat_assign( 5, 1, NULL ); 1* set aside memory for the

beam mode characteristics ~

/* initial guess of mode variables *
for ( i = 0; i <5; i++ )

mode.elementti] = input real(31 +i;

a fun.funct = crack integral; 1* crack length integral function pointer h

da fun.funct = da dn; i* da/dN function pointer */
a Tun.coeff =crack; /* the same coefficients are required to *
cGafun.coeff = crack; /* calculate the crack length and the ~
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crack[O] = bcrack; /* da/dN function. */
crack~l] = e; /* pass seven coefficients to afun & */
crack[2] = growth_rate; /* df fun. */
crack[3] = h; /* these coefficents calculate e nominal */
crack[4] = kknife_edge; /* which is used to determine the stress */
crack[5] = _ Load; /* intensity factor on which the functions */
crack[6] = p; /* are based. */
crack[7] = (double) m; /* number of subdivisions for integration */

m fun.funct = modal; /* beam mode characteristics equations */
cdi fun.funct = dmodal; /* derivative of characteristics equations */
m fun.coeff = mode data; /* the same coefficients are required to */
dm fun.coeff = mode-data; /* calculate the characteritics equations */
mode data[O] = kknifeedge; /* and their derivatives, knife-edge */
modedata[2] = L; 1* stiffness. beam length
modedata[3] = m beam; /* beam mass per unit length
mode data[4] = m exciter; 1* mass of exciter */
mode data[5] = el; /* modulus and moment of inertia */
modedata[6] = L exciter; /* position of exciter relative to knife- */

/* edge */
mode data[7 = (double) m; /* number of subdivisions for integration */

e_begin.funct = ezb_ limit; /* lower elastic limit function */
e_end.funct = eze Limit; /* upper elastic limit function
e_fun.funct = n2_thetah; /* strain squared x amplitude-dependent */
e_begin.coeff = ez limit; /* damping function */
e_end.coeff = ez timit;
e_fun.coeff = thetah;
ez_ limit[O] = 0.; /* lower elastic Limit is 0. */
ez limit[l] = h/2.; /* upper elastic Limit is one half h */
thetah[O] = c-1; /* internal damping coefficient
theta_h[1] = c_2; /* internal damping coefficient

p_begin.funct = pzb limit; /* tower plastic limit function
p_end.funct = pze Limit; /* upper plastic limit function */
p_fun.funct = n2 thetah; /* strain squared x amplitude-dependent */
p_begin.coeff = pztlimit; /* damping function */
p_end.coeff = pz limit;
p_fun.coeff = theta_p;
theta_p[O] = c_1; /* internal damping coefficient */
theta_p[1] = c_2; /* internal damping coefficient */

n_begin.funct = ezb_ limit; /* use elastic functions for integrating */
n_end.funct = eze_ limit; /* strain over the volume of the beam */
n_fun.funct = strain2; /* strain */
n_begin.coeff = ez_ limit;
n_end.coeff = ez_limit;
n_fun.coeff = phi-data; /* use coefficients of ddphi */

h_fun.funct = phi2; /* beam characteristic equation */
h_fun.coeff = phidata; /* eigenvector data */

/* calculate constant stress intensity factor */
k_crack = bcrack*cube( h/a_otd ); /* torsional stiffness at crack */

/* Rotation of beam at knife-edge support */
theta = C 2.*ei + L Load*k crack )*t-toad*p/

4.*ei*( k-knifeedge + kcracK ) );

/* Nominal bending moment between load points */
moment = .5*t _ toad*p - k-knifeedge*theta;
e_nominat = 6.*moment/sqr(h); /* nominal bending stress */

sif = ki( a_otd, h, enominaL ); /* constant stress intensity
factor */

r_ptastic = sqr( sif/eyield )/(PI*6.); /* constant plastic zone
radius */

/* STEP 3. while a old <= a finaL */
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while ( aold <= a final ) (

/* STEP 3.1 Calculate crack length for current cycle */

/* STEP 3.1.1 Assume a value for a new */

a_new = a_old + growthrate*quad( sif );

if ( '( istypesif ) )

(

/* constant fatigue load /
/* STEP 3.1.2 Use Newton-Raphson Interation */

crack[8] = a_old; /* lower Limit of integral */

a_new = rewton-raphson( anew, maxum, toler, a fun, da_fun );

/* STEP 3.2 Sum the new value of Life expended */
n p = nuLt*power( ( anew - a_old )/a finaL, c ); /* plastic

strain */

life += power( np/nult, 1./c ); /* include 2 only if loading
occurs on both up and dow"
stroke of piston */

/* STEP 3.3 Calculate new torsional stiffness at crack */
k crack = b crack*cube( h/anew );

mode data[l] = kcrack; /* pass on crack stiffness */

if is_ type sif
(

/* calculate new load */

e nominaL = sif/( dsqrt( PI*a_new )*f( anew/h ) ); /* nominal
bending

stress */
moment = sqr( h )*e nominal/6.; /* nomina, bending moment */

p = 4.*ei*( k crack + k knife edge )*moment/
2.*ei - _ Load*k_knife_edge )* tLoad*kcrack );

)

else

/* for constant load, calculate new plastic zone radius
Rotation of beam at knife-edge support */

theta = ( 2.*ei + L _ Load*k crack )*L-load*p/

4.*ei*( k-knifeedge + kcrack ) );

/* Nominal bending moment between load points */
moment = .5*"L[oad*p - k_knifeedge*theta;

e nominal = 6.*moment/sqr( h ); /* nominal bending stress */

/* STEP 3.4 Compute new plastic zone size */

r_plastic = sqr( ( sif = ki( anew, h, e_nominal ) ) /eyieLd )/
(P1*6.);

)

/* STEP 3.5 Compute beam fundamental mode characteristics

including eigenvatue, kappa, eigenvector, phi(x), and resonant

frequency, omega. Use the nonlinear system of equations function

to solve this 5 equation system. Assign the vector x as follows

element[O] - eigenvalue, kappa

element[1] - resonant frequency, omega
element[2 - B coefficient
element[3] - C coefficient
eLement[4] - D coefficient

where phi(x) cos( kappa*x ) + B*sin( kappa*x ) +

C*cosh( kappa*x ) + D*sinh( kappa*x ),
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and ddphi(x) = sqr( kappa )*( -cos( kappa*x )-B*sin( kappa*x )+
C*cosh( kappa*x ) + D*sinh( kappa*x ) ) */

if (abs( a-new - g Last ) > g-check ) /* only update for Large
crack growth ~

n-ode = beam-modeC mode, maxum, toter, m-fun, diifun )
gtlast = anew; /* reset crack length of Last update *

kappa = mode. element [0] ; /* eigenvatue *I
omega = mode.etement [1]; /* resonant frequency ~

/* STEP 3.6 Determine amplitude scaling factor *
phi data(0J = kappa;
phi data(1J = mode.element [2];
phi data[2J = mode.etement [3];
phi data[3J = mode.eLement[4J;
phi data[4J = 1.;
phi data[4J n-maxlstrain( L, .5*h, phi data )

/* STEP 3.7 Calculate plastic zone dislocation density *
Lambda-p = ( a-dist/chi )*( 1 - dexp( - .5*chi*nJ,) +

dsqrt( Lambda_0 )*dexp( -.5*chi*np
tambdap = sqr( Lambda p );

/* STEP 3.8 Comp~ute average amplitude-dependent damping ratio

dettaI' =(lambda-o*t n(x,z) 2*theta_h(n(x,z)) dV +
up

Lambda_0~t n(x,z) 2*theta-h(n(x,z)) dV V/
ue

It n(x,z)-2 dIV
u

where the functions n(x,z) and t jtanh(n(x,z)) are defined by

n(x,z) = z*scate-sactor*kappa^2h(x)
theta_h(n(x,z)) = c_1*(c_2/n(x,z))Y2*eil(c-2/n(x,z))

and eil( is the expoiun-i integ- t '1inction. */

/* check size of plastic zone relative to remaining section depth *

if ( ( pz-limit(0] = 0.5*(h -a-new) - r-ptastic ) < 0.0
/* r-pLastic is too large for remaining section depth *

r-plastic = 0.5*(h -new)- /* r-plastic is half of
remaining section depth *

pz_ Lmit[0] = 0.0; 1* treat plastic zone as full
depth of section *

depth =1.0;

pztimit[1] 0.5*(h -anew); /* upper plastic limit is one
half h less crack length *

theta h[2] = kappa; /* eigenvatue *
theta hi(3] = mode.etementC2]; /* phi(x) coefficient B
theta h[41 = fode.etement [3]; 1* phi(x) coefficient C
theta h(5] = mode.eLement [4]; /* phi(x) coefficient D
theta h[6] = phi-data[4]; 1* amplitude scale factor ~
theta p[2] = kappa; /* eigenvaLue *
theta-P[3] = mode.eLement [2]; /* phi(x) coefficient 8
theta-PE4] = mode.element [3]; /* pliiMx coefficient C
theta-P[5] = mode.element [4]; /* phiMx coefficient D '
theta-p[6] .25*sqr( h/pz Lirnit(l] )*phidata[4];

/* amplitude scale fa'ctor
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adjusted for reduced cross-
section in plastic zone */

delta h = ( multi-aL( 0., t, m, n, e-begin, eend, e fun ) +

depth*( ( lambda_p - lambda 0 )/lambda 0 )*
multi_at( t - r_ptastic, t, m, n. p begin, pend, p_fun ) )
muLti_aL( 0., 1, m, n, n begin, nend, n-fun );

/* STEP 3.9 Compute frequency dependent damping ratio */

delta i = (2.*PI*sqr( alpha )*e*temperature)/cheat*

omega*tau/( 1 + sqr( omega*tau ) );

/* calculate damping due to crack surfaces based on slope of beam at

crack */
detta crack = stopefactor*abs( dphi( t, phi-data ) );

/* STEP 3.10 Sum average amplitude- and frequency dependent
daiping. Also, sum external and crack related damping */

delta = delta-crack + delta ext + delta i + delta h;

) /* end of update bRock */

/* STEP 3.11 Output results for j % datarate == 0:

fatigue cycle number, j

fatigue crack length, anew
stress intensity factor, ki

torsional stiffness at crack, k crack
fraction of Life expended, life
plastic zone size, r_pLastic

plastic zone strain, njp
resonant frequency, omega
average ampLitude-dependent damping ratio, detta_h
frequency dependent damping ratio, delta-i
total damping ratio, delta */

if ( ( j % data rate ) == 0 ) (

if ( isplot_fite ) (

plotpak[O] = p; /* fatigte load
plot-pakI1] = enominat/e; /* fatigue nominal strain */
plotpak[2] = anew; /* fatigue crack length *1
plotpak[3] = sif; /* stress intensity factor */

pLotpak[4] = delta; /* total internal damping */
plotpak[5J = omega/(2.*PI); /* resonant frequency (hz) */
/* compute ratio of max beam strain to input forcing function.

generalized mass */
genmass = mbeam*simpson( 0., L, m, h fun ) +

m..exciter*phi2( [_exciter, phi-data );

plot_pak[6] = n max*abs( phi( L-exciter, phi-data ) )/
( 2.*detta*sqr( omega*gen mass ) );

if ( datapLot( f2, j, ptotpak ) = 0 ) /* output results in

plot format */
(

printf( "File write error in main\n" );
exit( 1 );
I

I else (

printpak[O] = anew; /* fatigue crack length */
printpak[l] = sif; /* stress intensity factor
printpak[2] = k_crack; /* torsional stiffness at crack */

printpak(3] = life; /* fraction of life expended */
printjpak[4] = r_plastic; /* plastic zone size */

printjpak[5] = np; /* plastic zone strain */
print.pak[6] = omega; /* resonant frequency
printpak[7] = detta_h; /* amplitude-dependent damping */
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print_pak[8] = delta_i; /* frequency dependent damping */
printjpak[9] = deltacrack; /* crack dependent damping
printjpak[1O] = delta; /* total damping ratio
print_pak[11J = p; 1* fatigue load
dataprint( j, print pak ); /* put results on screen */

)
)

a_old = anew; /* increment crack length */
++j; /* increment cycle counter */

) /* end of while loop */

if ( is_plot_file
if ( fclose( f? ) ) /* finished with output file */

(

printf( " Error in closing output data file %s\n", argv[2] );
exit( 1 ); /* could not close output file */
)

/* STEP 4. stop */

printf( " Normal exit\n" );
exit( 0 );
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/* <p> d:\lc\header\ */

This set of routines provides specific support for the program
dmp_crck. These functions are for use with dmp-crck only and may
require modification to work with other programs.

beammode .................. compute beam eigenvector, eigenvalue
and frequency

crack_integraL ............. compute crack length residual
d modal .................... derivative of beam characteristic

equation coefficients
da_dr ..................... change in crack length as a function of

fatigue cycle number
data_pLot .................. output to file data for DISSPLA plot
dataprint ................. output to screen data printout
dddphi ..................... third derivative of beam characteristic

equation with respect to the beam
coordinate

ddphi ...................... second derivative of beam
characteristic equation with respect
to the beam coordinate

ddphi2 ..................... square of second derivative of beam
characteristic equation with respect
to the beam coordinate

dphi ....................... first derivative of beam characteristic
equation with respect to the beam
coordinate

ezbLimit .................. starting limit for second integration
of multiple integration

eze limit .................. ending Limit for second integration of
multiple integration

f .......................... empirical formula for stress intensity
factor in pure bending

get-data ................... input material data from file
input print ................ print input data on screen
ki ......................... stress intensity factor for pure

bending
modal ...................... beam characteristic equation

coefficients
strain2 .................... strain squared function
n2_theta_h ................. strain squared, amplitude dependent

damping function
phi ........................ beam characteristic equation
phi2 ....................... square of beam characteristic equation
pzbLimit .................. starting Limit for second integration

of multiple integration
pzeLimit .................. ending limit for second integration of

multiple integration
strain ..................... beam strain function

#include <stdio.h>
#include <math.h>
#include <numeric.h>
#incLude <storage.h>

#define cube(x) ((x)*(x)*(x)) /* cube function */
#define sqr(x) ((x)*(x)) /* square function */
#define quad(x) sqr(x)*sqr(x) /* fourth power function */
#defne MAX_ INT 6 /* number of integers input from file */
#defin AAXREAL 36 /* number of reals input from file */
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MATRIX beam _mode( mode, maxum, toter, modefun, dmode_fun)
1* ***************/****** **** * ***** *

NAME

beam-mode .................. Compute beam fundametat characteristics
including eigenvalue, eigenvector, and
resonant trequency

SYNOPSIS

include <numeric.h>

mode = beam-mode( mode, maxum, toter, mode fun, dmodefun); beam
characteristics computed by Newton-
Raphson iteration

MATRIX mode; vector containing initial guess of
characteristics as input, and final
solution values as output

int maxum; maximum number of Newton-Raphson
iterations

double toter; accuracy tolerance on final solution
MSUPPLD mode-fun, user supplied beam characteristic

equations and coefficients
dmodefun; user supplied derivative of beam

characteristic equations and
coefficients

DESCRIPTION

A vibrating beam has four boundary conditions and an equation of
motion. Applying the Newton-Raphson iteration algorithm to these
five equations results in a solution for the eigenvatue,
eigenvector and resonant frequency.

FUNCTIONS USED

REFERENCES

Burden, R.L. and Faires, J.D. "Ntxvericat Analysis," third
edition, Prindte, Weber and Schmidt, Boston, 1984, pp. 153-
195.

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hilt, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 1987

double toter;
int maxum;
MATRIX mode;
M SUPPLD cdnode_fun, mode fun;

(
MATRIX newtono;

/* begin newton-raphson iterative solution */
mode = newton( mode, maxum, toter, mode_fun, dmode fun );

/* check for convergence */
if ( mat err == TRUE )

printf( "newton solution failed to converge \n" );
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/* return vector solution */
return ( mode );

double crack integral( a, co

NAME

crackintegral ............. computes crack Length residual integral
using Simpson's Rule

SYNOPSi S

include <nu eric.h>

deLtaa = crack-integral( a, co ); Compute crack Length residual
from integral of da/dN relation

double a, crack Length guess
*co, array of coefficients for use in function

delta a; residual due to error in estimate of a

DESCRIPTION

This function uses Simpson's rule to calculate an increase in the
crack Length integral. The function then computes the error in the
crack length integral increase by subtracting the known solution
from the numerical integration value. The resulting error is
returned to the calling function.

ta new
residual = 3 (da/(ki(a))'4) growth_rate,

ua old

cotO b crack
co1] ei
co[2] growthrate
co[3] h
co[4] =kknife edge
co[S] = load
co[6] p
col7] (double) m
co[8] a old

FUNCTIONS USED

da-dn ...................... change in crack Length at a function of
fatigue cycle number

simpson .................... numerical integration using Simpson's
rule

REFERENCES

Frost, N.E., Marsh, K.J. and Pook, L.P. "Metal Fatigue,"
Clarendon Press, Oxford, 1974, pp 234-235.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 1987

double a, *co;
(

double da dno), sipsono;
D_SUPPLD dafun;
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dafun.funct = dadn; /* da/dN function pointer */
dafun.coeff = co; /* da/dN array pointer */

/* return integral - crack growth constant */
return ( simpson( co[8], a, ( int ) co[7], da_fun ) - 1. );

MATRIX d_.odat( x, co, df

NAME

d_modaL .................... computes tIe matrix of coefficient
derivatives for NewtonRaphson
iteration

SYNOPSIS

include <nuneric.h>

df = d-modat( % co, df ); compute derivative matrix of nonlinear
equation coefficients

double *co; pointer to array of coefficient
parameters

MATRIX x, vector of solution values
dx; matrix containing derivative terms of

nonlinear equation coefficients

DESCRIPTION

User suppLied routine to calculate the partial derivatives of the
nonlinear system of equations as a function of x with modifiable
coefficients

co[O] = kknifeedge; knife-edge stiffness
coil] = k crack; crack stiffness
co(2] = t; beam length
co(3] = mbeam; beam mass per unit length
co[4] = mexciter; mass of exciter
co[5] = ei; modulus and moment of inertia
co[6] = Lexciter; position of exciter relative to knife-

edge
co[7] = (double) m; number of subdivisions for integration

FUNCTIONS USED

coeff red .................. reduction of coefficients
d_coeff .................... partial derivative of coefficient reduction
d determ ................... partial derivative of determinate
dcos ............... ...... Lattice SSP cosine function
dcosh ...................... Lattice SSP hyperbolic cosine function
d-in ....................... Lattice SSP sine function
dsinh ...................... Lattice SSP hyperbolic sine function
mat assign ................. assign matrix structure
matdelete ................. delete matrix storage space

REFERENCES

Burden, R.L. and Faires, J.D. "Numerical Analysis," third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87
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MATRIX df, x;
double *co;

double chei, cei, eigen, gei, mass. geii stiff;
double shei, sei, stiff c, stiff_ke;
double phi data [5];
double d determo, ddphi2O), p2ko, p2kbo, p2kcO, p2kdO, p2mo;
double p~mbo, p2mcO), p2mdo, phi2();
double dcoso, dcosho, dsino, dsinh();
int i;
0_-SUPPLD) ddh -fun(S), h_fun[5];
MATRIX a, ap, coeff, coeffp;
MATRIX coeff-redo, dcoeffo, mat assigno, mat deleteo;

/* user supplied equations for beam analysis */

eigen =x.eLement [0] *co[2]; 1* eigenvaLue * length
ch-ei = dcosh( eigen )
c_ei = dcos( eigen )
sh ei = dsinh( eigen )
s_ei =dsin( eigen )
stiff-c = co[1]/( x.eLement[0)*co[5] ) /* characteristic stiffness

at crack
stiff-ke = co[0]/( x.element[0]*co[5] ); characteristic stirfness

at boundary

/* characteristic equation coefficients *
phi data[0J x.element[OJ;
phi-data(1] = x.eLement[2];
phi data [2] = x.element [3];
phi-data(31 = x.etement(4];
phi data[4] = 1.; /* use scale factor of 1I*

/* create a matrix and partial derivative matrices *
a = mat assign( 4, 4, NULL )
ap = mat_assign( 4, 4, NULL )

/* fill a matrix *
a.element( 0] = 1;
a.element[ 1] 1.;
a.element( 2] = -( c-ei + stiff c*s-ei )
a.element[ 3] = s -ei;
a.element[ 4] 0.;
a.element[ 5] = stiff ke;
a.element[ 6] = -s -ei + stiff-c*c-ei-
a.element[ 7] = -c-ei;
a.element( 8] = 1.;
a.element[ 9] -1.;
a.element (10] ch -ei + stiff-c*sh-ei;
a.element[11] = sh-ei;
a.element (12] = 0.;
a.element[l3] = stiff ke;
a.eleeient[14] = sh -ei + stiff-c*ch-ei;
a.element(15] ch-ei;

/* partils with respect to eigenvalue *
ap.element[ 0] = 0.;
a-p.etenent[ 1] = 0.;
ajp.element[ 2] = co[21*( ( 1. + stiff_c/eigen )*sei -stiff_c*cei )
a~p.elewnent[ 3] = co[2J*ceci;
a~p.element[ 4] = 0.;
aj,.element( 5] = -co[2]*stiff -ke/eigen;
aj,.etement( 6] = -co(21*( ( 1. + stiff_c/eigen )*cei + stiff c*sei )
a-,.etenent( 7] = co[2]*s-ei;
ajp.element[ 8] 0.;
ap.eLement( 9] = 0.;
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ap.element [10] = coC2J*( ( 1. - stiff c/eigen )*sh-ei + stiff-c*ch-ei )
ajp.element (11] = co[2]*ch_ei;
ay.eement[12J = 0.;
ap.element[13] = .c012]*stiff-ke/eigen;
ap.element(14J = co[2J*( ( 1. - stiff c/eigen )*ch ei + stiff-c*sh_ei )
ap.etement(l5] co[2J*sh_ei;

I* 0 partial differential matrix *
for ( i = 0; i - 24; ++i

df.element Ci] = 0.;

1* partial derivatives of first equation with respect to eigenvalue.
aLL other partials of first equation are 0 ~

df.element [0]= d-determ( a, ap

/* get coefficients and partials ~
coeff = mat assign( 4, 1, NULL )
coeffp = mat-assign( 4. 1, NULL )

/* fill coefficients in terms of coeff [0]
coeff =coeff-red( a, coeff );
coeffj, = dcoeff( a, ap, coeff p )

/* setup array of functions for partial derivatives of generalized mass
and stiffness */

h fun[0].funct = p2m; /* mass with respect to eigenvatue ~
ddh -fun[0].funct =p2k; /* stiffness with respect to eigenvatue *
h -fun[1J.funct =phi2; 1* mass with respect to frequency */
h fun[2J.funct =p2mb; /* mass with respect to coefficient B *

ddh -fun[2J.funct = p2kb; /* stiffness with respect to eigenvatue B *

h fun[3].funct = p2mc; /* mass with respect to coefficient C */
ddh -fun[3J.funct = p2kc; /* stiffness with respect to coefficient C *
h fun[4].funct = p2md; /* mass with respect to coefficient D *1
ddh-fun[4].funct = p2kd; /* stiffness with respect to coefficient 0D~

/* pass coefficients to integration functions *
for Ci = 0; i < 5; i++)

h fun[iJ.coeff = phi-data;
ddh-funi .coeff = phi-data;

/* rartini of beam mass */
gen mass =co[3J*simpson( 0., co[2], (int) co[l], hjfuni] +

co(4]*(*h-funi.funct)( coC6J, phi-data )

if ( i == 1
1* partial derivative of equation 2 with respect to frequency *
df.element[6] = 2.*x.etement[1]*gen_mass;

e lse

/* partial of beam stiffness *
gen stiff = co[5]*simpson( 0., co[2], (int) co[7], ddhfun[i]);

1* partial derivatives */
df.eLenent[1 + 5*i]= sqr( x.element[1] )*gen mass - gen stiff;

/* third -fifth equations, derivative with respect to eigenvatue *
for ( i i; i -= 3; ++i

df.element[i+1] = coeffp.element~i];

/* third - fifth equations, mode shape coefficients *

df.elementil2J = -1.;
df.etement[18] -1.;
df.element[24J -1.;
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/* release storage *
a = matde lete( a )
ap = mat delete( a-p
coeff =mat de lete( coeff )
coeffjp = mat-deLete( coeff~p )

return ( df )

double da c( a, co)

NAME

dacdn .....................crack growth per fatigue cycle

SYNOPSIS

rate = dadn( a, co );crack growth rate per fatigue cycle

double a, crack Length estimate
*co, array of material coefficients
rate; crack growth rate

DESCRIPTION

Compute crack growth rate based on dislocation theory. The

relation is

da/dN = alpha*KI-4

where KI is the stress intensity factor and alpha is a material
dependent constant. The function ki is used in the computation
of the stress intensity factor. ki requires the following
calculations

Calculate new torsional stiffness at crack
k-crack =b-crack*cube( ( h/anew ) );

Rotation of beam at knife-edge support
theta = C2.*ei + t _ Load*k -crack )*_Loai*p/

( 4.*ei*( k-knifeedge + kcrack ) );

Nominal bending moment between Load points
moment = .5*1-toad*p - k_knife-edge*theta;
e-nominal = 6.*moment/sqr(h); nominal bending stress

CoOWJ = b crack
cCi] e
coC2] growth-rate
co[3] = h
co[4] k -knife -edge
Co151 = I load
co[61 = p
co[7l (double) m
co[8] = a-old

Express the relation in the form

da/aipha*KF'4 = dN

FUNCTIONS USED

ki .........................compute stress intensity factor

REFERENCES
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Frost, N.E., Marsh, K.J. and Pook, L.P. "Metal Fatigue,"
Clarendon Press, Oxford, 1974, pp 234-235.

AUTHOR: Rick Jones

VERSION: 1.0
DATE: 18 AUG 1987

double a, *co;
(

double k_crack, moment, enominal, theta;
double kio;

/* Calculate new torsional stiffness at crack */

k crack = co[O]*cube( co[3]/a );

/* Rotation of beam at knife-edge support */

theta = ( 2.*co[I] + co[5]*k crack )*co[5]*co[6]/
( 4.*co[I]*( co[4] + k crack ) );

/* Nominal bending moment between load points */

moment = .5*co[5]*co[6 - co[4]*theta;
e_nominal = 6.*moment/sqr( co[3] ); /* nominal bending stress */

/* return growth rate */
return ( 1./( co[2]*quad( ki( a, co[3], e_nominal ) ) ) );

I

int dataplot( fp, n, data

NAME

dataplot. ......... Output to a file data for use with

DISSPLA programs on the PRIME

SYNOPSIS

dataplot( file, n, data ) Output data to file in specific format

FILE *fp; output file
int n; fatigue cycle number
double *data; pointer to array of output data

DESCRIPTION

This function outputs data in the following format

n p strain a new ki

%d5 %f6 %ell.4 xxxxxxxxxxx %e11.4 xxxxxxxxxxx Xell.4 xxxxxxxxxxx

delta frequency amplification
Ye11.4 %f7.1 %e11.4

where

amplification = ratio of output strain in beam to input force

of exciter (in/in/lb)
a_new = crack length (in)
delta = internal damping ratio
frequency = resonant frequency of beam (cps)

ki = stress intensity factor (psi-in'l/2)
n = fatigue cycle number
p = fatigue toad
strain = nominal strain in beam under fatigue toad

and small x represents a blank space.
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FUNCTIONS USED

fprintf .................... write to file

REFERENCES

AUTHOR: Rick Jones
VERSION: 1.0

DATE: 18 AUG 1987

double *data;
FILE *fp;
int n;
(

char *record 1 = "1%5d%6.0f%11.4E %11.4E %11.4E\n";
char *record 2 = "%11.4E%7.1f%11.4E\n";
int err;

/* initialize error code *I
err = 0;

/* display fatigue cycle number and crack length on screen */
printf( "fatigue cycle number: %5d\n", n );
printf( "crack length: %11.4e (in)\n", data[2] );
printf( "total damping: %11.4e\n", data[41 );

/* write first record to file */
if ( fprintf( fp, record_1, n, data[O], data[l], data[2], datai3] ) != 67

(

printf( "File write error in dataplot\n" ); /* error in output */

err = 1; /* set error code */
I

else /* write second record to file */
if ( fprintf( fp, record_2, data[4], data[51, datai6] ) 30

(

printf( "File write error in dataplot\n" ); /* error in output */
err = 1; /* set error code */

return( err ); /* return error code */
I

void datapjrint( n, data
1* *********************************************************************

NAME

dataprint ................. Output dmp_crack results to screen

SYNOPSIS

dataprint( n, data ); Output crack growth and internal

damping results to console

double *data; array of results
n; fatigue cycle number

DESCRIPTION

Output table of crack growth and internal damping results to

console. Table of results

fatigue cycle number, j
fatigue crack length, anew
stress intensity factor, ki

torsional stiffness at crack, k_crack
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fraction of life expended, life
plastic zone size, rjplastic
plastic zone strain, n~p
resonant frequency, omega
average amplitude-dependent damping ratio, delta h
frequency dependent dampqing ratio, delta 1
crack Length dependent damp~ing ratio, delta crack
total damrping ratio, delta
fatigue loading, p

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 1987

double *data;
int n;

I* print to screen *
printf( "fatigue cycle number %5d (cycle)\n", n )
printf( "fatigue crack length X11.41e (in)n", data[O]);
printf( "stress intensity factor %11.41e (psi-in-1I2)\n", data(1] )
printf( "torsional stiffness at crack %11.4te (lb-in)\n11, data[2] )
printf( "fraction of Life expended %11.41e\n", data[31 );
printf( "plastic zone size %11.41e (in)\n", data14] )
printf( "plastic zone strain %11.41e (inlin)\n", data[5J )
printf( "resonant frequency %11.4le (rad/sec)\n", datat6] )
printf( "amplitude-dependent damfping ratio %11.4te\n"1, data(7] )
printf( "frequency dependent damrping ratio %11.41e\n"1, data[8J )
printf( "crack Length dependent damrping ratio %11.41e\n", data19J )
printf( "total damrping ratio %11.41e\n", dataflO] )
printf( "fatigue load %11.4(e (lb)n\n"l, datatil] )

return;

double dckdphi( x, co)

NAME

dddphi................... third derivative of beam characteristic
eauation with respect to x

SYNOPSIS

y =dddphi( x, co ); calculate third derivative of beam
characteristic equation with
respect to x

double *co, coefficients of characteristic equation
X, beam coordinate

y; third derivative of beam at location x

DESCRIPTION

Calculate third derivative of beam at location x. Third derivative
has the following equation form

dddphi(x) = scale-factortco(0V-3*( sin( coCO1*x )-
cofljtcos( co[0]tx ) +
co(2]tsinh( co(O1*x ) +
co[3]tcosh( co[O1*x ))

co[O] = kappa;
col] = modeeLement [2];
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co[2] = mode.eLement [3];
co[3] = mode.etement(4];
co[4] = scale_factor;

FUNCTIONS USED

dcos ....................... Lattice SSP cosine function
dcosh ...................... Lattice SSP hyperbolic cosine function
dsin ....................... Lattice SSP sine function
dsinh ...................... Lattice SSP hyperbolic sine function

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

double y;
double dcoso, dcosho, dsino, dsinho;

/* calculate third derivative of beam at x *1
y = co[4J*cube( co[D] )*( dsin( co[O]*x ) - co[l]*dcos( co[O]*x ) +

co[2]*dsinh( co[O]*x ) + co(3]*dcosh( co[O1*x ) );

return ( y );
)

double dclphi( x, co )

NAME

Ir-,i ...................... second derivative of beam
characteristic equation with respect
to X.

SYNOPSIS

y = ddphi( x, co ); calculate second derivative of
beam characteristic equation with
respect to x

double *co, coefficients of characteristic equation
x, beam coordinate
y; curvature of beam at location x

DESCRIPTION

Calculate curvature of beam at Location x. Curvature has the
following equation form

ddphi(x) = scale_factor*co[Of2*( -cos( co[O1*x ) -
co[1]*sin( co(O]*x ) +
co[2]*cosh( co[O]*x )
co[3]*sinh( co(0*x ) )

co[O] = kappa;
co[1] = mode.element [2];
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coC2] = mode.element [3);
co(3] = mode.eleinent(4J;
co[4] = scate factor;

FUNCTIONS USED

dcos .......................Lattice SSP cosine function
dcosh ......................Latti' e SSP hyperbolic cosine function
dain ......................Lattice SSP sine function
dsinh ......................Lattice SSP hyperbolic sine function

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick .ones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;

double y;
double dcoso, dcosho, dsino, dsinho;

1* caculate curvature of beam at x *1
y = co[41*sqr( co[a] )*( -dcos( co[O]*x ) - co(1J*dsin( co[O]*x )+

co(2J*dcosh( co[OJ*x ) + co[3J*dsinh( coEO]*x ))

r .turn ( y )

double ddphi2( x, co)

NAME

ddphi2 .....................square of second derivative of beam
characteristic equation with respect
to X.

SYNOPSIS

y = ddphi2( x, co ); calculate square of second derivative of
beam characteristic equation with
respect to x

double *co, coefficients of characteristic equation
X, beam coordinate
y; curvature of beam at location x

DESCRIPTION

C; culate square of curvature of beam at location x. Curvature has
the following equation form

ddphi(x) = scate-factor~co[0f'2*( -Cos( co[OJ*x)-
co(1]*sin( co[01*x +
co[2]*cosh( co[OJ*x )+
co(3J*sinh( co(O]*x))

co[O] = kappa;

D-26



co[1] = mode.element[2];
co[2] = mode.element [3];
co[3] = mode.element[4];
co[4] = scale-factor;

FUNCTIONS USED

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;

double ddphio;

I* calculate square of curvature of beam at x *1

return ( sqr( ddphi( x, co ) ) );

)

doubte cphi( x, co )

NAME

dphi ....................... first derivative of beam characteristic
equation with respect to x.

SYNOPSIS

y = dphi( x, co ); calculate first derivative of beam
characteristic equation with
respect to x

double *co, coefficients of characteristic equation
x, beam coordinate
Y; slope of beam at location x

DESCRIPTION

Calculate slope of beam at location x. Curvature has the
following equation form

dphi(x) = scalefactor*co[0]*( -sin( co[O]*x ) +
co[1]*cos( co[O]*x ) +

co(21*sinh( co[O]*x ) +
co[3]*cosh( co[O]*x ) )

co[] = kappa;
co[1] = mode.element[2];
co[2] = mode.element[3];
co[3] = mode.elementE4];
co(4] = scale-factor;

FUNCTIONS USED

dcos ....................... Lattice SSP cosine function
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dcosh ...................... Lattice SSP hyperbolic cosine function
dsin ....................... Lattice SSP sine function
dsinh ...................... Lattice SSP hyperbolic sine function

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-HiLt, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-

Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

double y;
double dcoso, dcosho, dsino, dsinho;

/* calculate slope of beam at x */
y = co[4]*co[0]*( -dsin( co[OJ ) + co[1]*dcos( co[OJ*x ) +

co[2]*dsinh( co[O]*x ) + co[3]*dcosh( co[O]*x ) );

return ( y );
)

/*ARGSUSED parameter x is not used in this function */

double ezb limit( x, co

NAME

ezb.limit .................. z coordinate tower limit of
integration over the elastic range

SYNOPSIS

y = ezb.timit( x, co ); z coordinate tower limit of
integration over the elastic beam
material

double *co, user modifiable coefficients for
defining tower limit

x, value of x coordinate for application

in setting tower limit

y; lower limit of integration

DESCRIPTION

This function defines the tower limit of integration for the z
coordinate of a beam. The limit is specifically for the elastic
range of material. The function is called by multi_at, a routine
that performs multiple numerical integration.

FUNCTIONS USED

REFERENCES

Burden, R.L. and Faires, J.D. "Numerical Analysis," third

edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.
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AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

/* the first element in the array of coefficients contains a constant
that defines the lower limit for the function being integrated */

return ( co[O] );

/*ARGSUSED parameter x is not used in this function*/

doubltzeez imit( x, co
/*

NAME

eze timit .................. z coordinate upper Limit of
integration over the elastic range

SYNOPSIS

y = ezbtimit( x, co ); z coordinate upper Limit of
integration over the elastic beam
material

double *co, user modifiable coefficients for
defining upper Limit

x, value of x coordinate for application
in setting upper Limit

y; upper limit of integration

DESCRIPTION

This function defines the upper limit of integration for the z
coordinate of a beam. The Limit is specifically for the elastic
range of material. The function is called by multi_at, a routine
that performs multiple numerical integration.

FUNCTIONS USED

REFERENCES

Burden, R.L. and Faires, J.D. "Numerical Analysis," third
edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

/* the second element in the array of coefficients contains a
constant that defines the upper Limit for the function being
integrated */

return ( co[1] );
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int get data( fp, input_int, input real

NAME

get-data ................... input data from file

SYNOPSIS

include <stdio.h>

err = get data( fp, inputint, input real ); input material and
program control constants

FILE *fp; input file
double *inputreal; pointer to array of real constants
int err, error code: 0 - no error

1 - error
*inputint; pointer to array of integer constants

DESCRIPTION

get data accesses an open file and inputs the data associated with
the two arrays. Data is placed in the input file in the following
format:

inputreal:

a 0 = initial crack length (in).
a disL = dislocation density coefficient (dist/in-2).
a final = final crack length (in).
alpha = linear expansion coefficient (in/in/xF).
b_crack = material constant relating crack length to

torsional stiffness (lb-in).
c = Manson-Coffin ductility exponent.
c1 = internal damping coefficient.
c_2 = internal damping coefficient (in/in).
c heat = specific heat per unit volume (psi/xF)
chi = strain independent probability for the

remobitization of immobile dislocations.
detta ext = damping ratio caused by external source
e = Young's modulus (psi).
ei = Young's modulus x moment of inertia (tb-in'2).
n_max = maximum strain in beam during damping data

collection (in/in).
n_utt = static plastic fracture value at 1/2 cycle

(in/in).
g_check = minimum crack growth before updating

eigenvector results (in).
growth_rate = crack growth rate constant based on

dislocation theory of crack growth
(in^7/tb'4-cycte).

h = beam height (in).
k = thermal conductivity (lb/sec-xF)
k_knife edge = torsional stiffness at knife-edge support

(lb-in).
I = beam length
(_exciter = location of exciter relative to knife-edge

support (in).
tIload = location of load relative to knife-edge

support (in).
Lambda 0 = distocatin density for np = 0 (dist/in'2).
m beam = mass of beam per unit length (slug/inch).
m exciter = mass of exciter and counterweight (slug).
p = fatigue toad applied to beam (tb).
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e_yietd = yield stress (psi).
slope_factor = crack dependent constant relating beam slope

and damping.
temperature = ambient temperature of specimen (xF).
toter = tolerance for iteration algorithms.

mode.element[O] thru [4] are initial guesses for the newton
iterative solution to the nonlinear beam equation, and
represent the following data

eLement[O] - eigenvatue, kappa*t
eLement[I] - resonant frequency, omega

element[2] - B coefficient
element13] - C coefficient
element[4] - D coefficient

inputint:

data-rate = number of fatigue cycles between data output
is_type_sif = 0 for constant toad

1 for constant stress intensity factor
= initial cycle number

m = number of subintervals for integration
maxum = number of iteration cycles
n = number of subintervals for second integration

FUNCTIONS USED

fscanf ..................... read from file

REFERENCES

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 19 AUG 87

FILE *fp;
double *input_reat;
int *input_int;
(

int err, i;

err = 0; /* initialize return code */

/* input all real values, one per line */
for ( i = 0; i < MAX-REAL; i++

(
if ( fscanf( fp, "W[f", ( inputreaL + i ) ) 0

{
/* error in input */
printf( "File error reading reals in get data, i = Xd\n", i );
err = 1; /* set error code */
break; /* end for Loop */
)

)

/* input all integer values, one per line */
if C err == 0 )

(

for C i = 0; i < MAX INT; i++
(
if ( fscanf( fp, "Wd', ( input_int + i ) ) == 0

(

/* error in input */
printf( "Fite error reading integers in get data, i =d\n", i );
err = 1; /* set error code */
break; /* end for loop */
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)
)

)

/* return error code */
return ( err );

void inputj rint( input_int0 input real )

NAME

inputprint ................ print input data to screen

SYNOPSIS

include cstdio.h>

inputyprint( inputint, input_reat ); print input material and
program control constants to screen

double *inputreat; pointer to array of real constants
int *inputint; pointer to array of integer constants

DESCRIPTION

This function takes the two input arrays and prints them on the
the screen along with their descriptions.

input real:

a0 = initial crack Length (in).
adist = dislocation density coefficient (disi/in-2).
a-final = final crack length (in).
alpha = Linear expansion coefficient (in/in/xF).
b crack = material constant relating crack Length to

torsional stiffness (lb-in).
c = Manson-Coffin ductility exponent.
c 1 = internal damping coefficient.
c-2 = internal damping coefficient (in/in).
c heat = specific heat per unit volume (psi/xF)
chi = strain independent probability for the

remobilization of immobile dislocations.
dettaext = damping ratio caused by external source
e = Young's modulus (psi).
ei = Young's modulus x moment of inertia (Lb-in'2).
n_max = maximum strain in beam during damping data

collection (in/in).
n ult = static plastic fracture value at 1/2 cycle

(in/in).
g check = minimum crack growth before updating

eigenvector results (in).
growthrate = crack growth rate constant based on

dislocation theory of crack growth
(in7/b-4-cycLe).

h = beam height (in).
k = thermal conductivity (ib/sec-xF)
k_knife edge = torsional stiffness at knife-edge support

(lb-in).
I = beam length
t-exciter = location of exciter relative to knife-edge

support (in).
I load = location of load relative to knife-edge

support (in).
lambda_0 = distocatin density for n p = 0 (dist/in'2).
m.beam = mass of beam per unit length (stug/inch).
m exciter mass of exciter and counterweight (slug).
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p = fatigue toad applied to beam (Ib).
ecyield = yield stress (psi).
slope factor = crack dependent constant relating beam slope

and damping.
temperature = ambiient temperature of specimen Wx).
toter = toterance for iteration algorithms.

mode.element[OJ thru [4] are initial guesses for the newton
iterative solution to the nonlinear beam equation, and
represent the following data

eLement [0] - igenvaLue, kappa*t
etement(11 resonant frequency, omega
elemient(21 8 coefficient
etement(3] C coefficient
etementC4l D coefficient

input int:

data-rate = numbier of fatigue cycles between data output
istypesif = 0 for constant load

I for constant stress intensity factor
= initial cycle numb~er

m = numb~er of subintervats for integration
niaxuit = numb~er of iteration cycles
n = numb~er of subintervaLs for second integration

FUNCTIONS USED

REFERENCES

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 19 AUG 87

double *input_real-
mn *itnputint;

I* print real input data to screen ~
printfC "initial crack length %11.4te (in)n", input_realCO] )
printf( "dislocation density coefficient %11.41e dislin'2)\n", input reatl ]
printf( "final crack length %I1.41e (in)\n", input realC2] );
printf( "Linear expansion coefficient %11.41e (in/in/xF)\n"1, iniput reat(3] )
printfC "crack torsional stiffness slope X11.41e (lb-in)\n", input reaL[4] )
printf( "Hanson-Coffin ductility exponent %11.4te \n", iniputreat [5] )
printf( "internal damping coefficent 1 %11.4Le \n", input reaL[6] )
printf( "internal damping coefficent 2 %11.I4e (in/in)\n"l, inpt treatC7] )
printf( "specific heat %II.4(e (psi/xF)\nm, input reat(8J )
printf( "remobilization probability %11.4Le \n", inpt treaLC9] )
printf( "external damping ratio %11.4te \n", input realli1l )
printf( "Young's modulus %11.4te (psi)\n", iniput real(Il] )
printf( "modulus x Moment of Inertia %11.4te (lb-in'2)\nH, irnputreaL112] )
printf( "damping cycle maximum strain %11.41e (,n/in)\n"l, input-real(13] )
printf( "static plastic fracture value %11.41e (inlin)\n"l, input real(14] )
printf( "eigenvatue update parameter %11.41e (in)\n", input reali1] );
printf( "crack growth rate X11.41e in'7/Lb'4-cycLe)\n"1, inpt treatfl6] )
printfC "beam height %11.4le (in)n", input reatC 7] );
printf( "thermal condluctivity %11.4te (tb/sec-xF)n"l, input-real[181 )
printf( "knife-edge torsional stiffness %11.4te (Lb-in)\n", input reat[19] )
printf( "beam length %11.4le (in)n", iniput reat(20] )
printfC "excitation Location X11.41e (in)\n", input reaL(21] )
printf( "initial dislocation density %11.4te (disl/in'2)\n"1, iniput-reat[22] )
printf( "fatigue load location %11.4te (in)n"l, input_real[23J );
printf( "beam mass per unit Length %11.41e Cslug/in)\n", input reat[241 )
printf( "exciter mass X11.41e (sLug)\n", input reatC25] )
printf( "fatigue load %11.41e (tb)\n", input reatC26] )
printf( "yield stress %11.4Le (psi)\n", input reatC27] )
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printf ( "damping slope factor %11.4te \n", input real(28] );
printf( "temperature %11.4te (xF)\n", input real[29] )
printf( "approximation tolerance %11.41e \n", input reatE3O] )
printf( "initial guess of beam mode parameters\n" );
printf( " igenvalue %11.4te \n", input real[311 )
printf( " resonant frequency %11.4le (rad/sec)\n", input realt32] )
printf( " B coefficient %11.4te \ni", iniput reat[33] )
printf( ' C coefficient %11.4te \n", input reaL C34] )
printf( " D coefficient %11.4te \n", iniput realE3S] )

I* print integer input data to screen */
printf( "sampling interval %5d Ccycle)\n", input mnt(01);

I* report load type */
if ( *( input mnt + 1 ) =0

printfC "load type -constant load\n" )
else

printf( "load type -constant stress intensity factor\n" )
printf( "initial cycle number %5d (cycle)\n", inputint[2] )
printf( "subintervals for integration %5d (intervals)\n", input int[3] )
printf( "maximm iteration cycles %5d (cycLe)\n", input int[4] );
printfC "subintervals on 2nd integration %Sd (intervaLs)\n", input intC5] )

return;

double f( r)

NAME

f ....................... empirical formuila for pure bending
stress intensity factor

SYNOPSIS

double fo;

y = f( r );pure bending stress intensity factor
emipirical formula

double r, ratio of crack length to section depth
y; empirical formula for pure bending

DESCRIPTION

Calculate the empirical formula for pure bending

f(a/h) = 1.122 - 1.4*(a/h) + 7.33*(alh)'2 -13.08*(a/h)-3 +

14*(a/h)^4

(0.2% for a/h -c 0.6),
or

f(a/h) =sqrt(tan(p)/p)*
(.923 + .199*(1 - sin(p))Y-4/cos(p),

where p = c*a/(2*h) and r = a/h

0.5% for any a/h).

FUNCTIONS USED

dcos .................... Lattice SSP cosine function
dsin .................... Lattice SSP sine function
dsqrt ................... Lattice SSP square root function
dtan .................... Lattice SSP tangent function
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REFERENCES

Tada, M., Paris, P.C. and Irwin, G.R., "The Stress Analysis of
Cracks Handbook," Del Research Corporation, Mel Lertown,
Pennsylvania, 1973, pp 2.13-2.14.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 19 AUG 87

double ******************************** r;

double r;

double dcoso, dsino, dsqrtC), dtano;

l* select the forrmula ~
if ( r -= 0.6 )

/* return polynomial calculation *
return ( 1.122 - 1.4Cr + 7.33*sqr( r )-13.08Ccube( r )+ 14.*quad( r ))

else (
I* return trigonometric calculation C

p = .5*Pl~r;
return ( dsqrt( dtan( p )Ip )*quad( .923 + .199*( 1. - dsin( p )/)dcos( p ))

)

double ki( a, h, e

NAM4E

ki ...................... stress intensity factor for pure
bending

SYNOPSIS

y = ki( a, h, e );stress intensity factor for the case of
pure bending

double a, crack length
h, section depth
e, nominal stress

yo stress intensity factor

DESCRIPTION

Begin by calculating the stress intensity factor using an
empirical formuila for pure bending

f(a/h) =1.122 - 1.4C(a/h) + 7.33*(a/hY'2 -13.08C(a/h)-3 +
14*(a/hy-4

(0.2% for a/h <0.6),
or

f(a/h) = sqrt(tan(psi)/psi)C
(.923 + .199*(1 - sin(psi))4/cos(psi),

where psi = ca/(2*h)

C0.5% for any a/h).

y = e~sqrt(ca)*f~a/h) stress intensity factor

FUNCTIONS USED
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dsqrt ...................... Lattice SSP square root function

REFERENCES

Tada, H., Paris, P.C. and Irwin, G.R., "The Stress Analysis of
Cracks Handbook," Del Research Corporation, Hellertown,
Pennsylvania, 1973, pp 2.13-2.14.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 19 AUG 87

double a, h, e;
(

double fo, dsqrto;

/* return the stress intensity factor */

return ( e*dsqrt( PI*a )*f( a/h ) );

MATRIX modat( x, co, residuals

NAME

modal ...................... calculates residuals

SYNOPSIS

#include <numeric.h>

residuals = modal( x, co, residuals ); calculate residuals of
nonlinear equations

double *co; pointer to array of nonlinear equation
coefficients

MATRIX residuals vector containing equation errors based
on equation coefficients and vector
of guess values

x; vector of guess values to solve
nonlinear set of equations

DESCRIPTION

Contains user supplied equations to determine residuals in solving
nonlinear system of equations in x. This function is designed for
use with newtono, the Newton-Raphson Iterative process for
solving nonlinear sets of equations.

co[O] = k knife edge; knife-edge stiffness
col] = kcrack; crack stiffness
co[2] = L; beam length
co[3] = mbeam; beam mass per unit length
co(4] = m exciter; mass of exciter
coC5] = ei; modulus and moment of inertia
coC6] = t_exciter; position of exciter relative to knife-

edge
co[7] = (double) m; number of subdivisions for integration

FUNCTIONS USED
coeff red .................. reduce characteristic oefficients
dcos ....................... Lattice SSP cosine function
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dcosh ................... Lattice SSP hyperbolic cosine function
ddphi2 .................. square of the second derivative of the

characteristic equation
dsin .................... Lattice SSP sine function
d~sinh ................... Lattice SSP hyperbolic sine fun~ction
mat_assign............... assign matrix parameters to variable
mat delete............... delete matrix storage space
phii2.................... square of the characteristic equation
simpson ................. nuerical integration using Simpson's rule

double *co;
MATRIX residuals, x;

DOSUPPLD hfun, ddh fun;
doubLe chei, cei, eigen, gen mass, gen stiff;
double sh-ei, scei, stiff c, stiffke;
double phi datac51;
double ddphi2ZO. phi2o);
double dcos(), dcosho, dsino, dsinho);
mnt i;
MATRIX a, coeff;
M4ATRIX coeff redo, mat assigno, mat deLeteo);

/* user supplied equations for beam analysis */

cigen = x.eLement[OJ*co[2]; 1* cigenvalue *length *
ch ci = dcosh( cigen )
c ci = dcos( cigen )
sh ei =dsinh( eigen )
s ei = dsin( eigen )
stiff c = co[11I( x.eLement[O]*co[5] ) /* characteristic stiffness

at crack *
stiff-ke = co[O]/( x.etement[O]*co[5] ) /* characteristic stiffness

at boundary *

h -fun.funct = phi2; /* beam characteristic equation *
h-fun.coeff = phi data; /* eigenvector data *

ddh-fun.funct = ddphi2; I* second derivative of beam characteristic
equation *

ddh-fun.coeff = phi-data; /* cigenvector data

/* characteristic equation coefficients *
phi data[O] = x.etement(O];
phi datall] =x.eLement(21;
phi dataC2] = x.element(3];
phi data[3J = x.element(4j;
phi data[4j = 1.; I* use scale factor of 1 *

I* create a matrix */
a = mat_assign( 4, 4, NULL )

/* fill a matrix */
a.eLementC 0] = 1.;
a.elementC 1] = 1.;
a.element[ 2] = -( c-ei + stiff c~s-ei )
a.eLement[ 3] = sc- i;
a.elemcnt( 4] 0.;
a.eLement[ 5J = stiff~ke;
a.eLementC 6J = -s - i + stiff-c*c~ei;
a.etement[ 7] = -ccei;
a.clcment[ 8] = 1.;
a.eLementC 9] = -1.;
a.etement[10] = ch c i + stift _c*sh-ci;
a.eLement Cli] = sh-ci;
a.etement [12] = 0.;
a.element [13] stiff~ke;
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a.etement[141 = shei + stiff c*ch-ei;
a.etement[15] = chei;

/* determinate of a should be 0. first residual is det(a) */
residuats.etement[Ol = mat determ( a );

/* create a vector to hold coefficients /
coeff = mat assign( 4, 1, NULL 3;

/* fill coefficients in terms of coeff[ 01*/
coeff = coeffred( a, coeff );

/* calculate residuals for mode shape coefficents */
for ( i = 1; i - 3; ++i )

residuats.eement[i+l] = coeff.element [i - x.etement[i+1];

/* beam mass */
gen mass = co3]*sipson( 0., co[2], Cint) co[7i, h_fun +

co[4]*phi2( co[61, phi-data );

/* beam stiffness */
genstiff = co[5]*simpson( 0., co[21, (int) co[T, ddh_fun 3;

/* residual for frL-quency */
residuats.etement(1] = sqr( x.etement(1] )*gen mass - gen stiff;

/* release storage */
a = mat delete( a );
coeff = mat delete( coeff 3;

return( residuals );

double n2theta.h( x, z, co 3

NAME

n2 thetash ................. beam strain squared multiplied by
internal damping ratio

SYNOPSIS

y = n2_thetah( x, z, co ); beam strain squared times internal
damping ratio

double *co, expression coefficients
x, length coordinate of beam
y, result
z; height coordinate of beam

DESCRIPTION

Catcutate beam strain squared multiplied by internal damping ratio
at any x, z coordinate of a beam. The result is computed from the
following equation

y = n(x,z)'2*c_l*(c_2/n(x,z)) 2*ei(c_2/n(xz)),

where c 1 and c 2 are material constants. no is the beam strain
and eil() is the exponential integral function.

co[O] = c_1; internal damping coefficient
co[1] = c_2; internal damping coefficient
co[21 = kappa; eigenvatue
coE3] = mode.etement[2]; phi(x) coefficient B
co[4] = mode.element[3]; phi(x) coefficient C
co(51 = mode.element[4]; phi(x) coefficient D
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co[6] = phi data[4l; amplitude scale factor

FUNCTIONS USED

eil ........................ Lattice SSP exponential integral
function

strain ..................... beam strain

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hilt, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hart, Inc. Englewood Cliffs, NJ, 1972.

Povoto, F. "On the Granato-Lucke Expression for the Amplitude-
Dependent Damping," Scripta Metatlurgica, v 9, pp 865-872, 1975.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 23 AUG 87

double *co, x, z;
(

double ratio;
double eil(), straino;
int irc;

/* initialize error code */
irc = 0;

/* test input to exponential integral function */
if ( z ) /* z coordinate must be nonzero */

ratio = abs( co[1]/strain( x, z, &co[2] ) );
else

return( 0. );

if ( ratio > 669. ) /* test for underflow */
return ( 0. );

else
/* return result - ignore first two coefficients when providing

pointer to strain function */
return( co[O]*sqr( co[l] )*eil( ratio, &irc) );

double phi( x, co )

NAME

phi ........................ beam characteristic equation

SYNOPSIS

y = phi( x, co ); calculate displacement from
beam characteristic equation

double *co, coefficients of characteristic equation
x, beam coordinate
y; displacement of beam at location x

DESCRIPTION
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Calculate displacement of beam at location x. Displacement has
the following equation form

phi(x) = scate factor*( cos( co[O]*x )+ cofll*sin( co(O]*x )+
co[2]*cosh( coCO]*x )+ co(3]'sinh( coCO1*x))

coCO] = kappa;
coI] = mode.ekement (2];
co[2] - mode. element (3)];
coE3] = mode.eLementE43-
coC4] = scale factor;

FUNCTIONS USED

dcos .................... Lattice SSP cosine function
dcosh ................... Lattice SSP hyperbolic cosine function
dsin .................... Lattice SSP sine function
dsinh ................... Lattice SSP hyperbolic sine function

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hat(, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;

double y;
double dcoso, dcosho, dsino), dsinho;

1' calculate displacement of beam at x */
y = co(4]*( dcos( coEOI'x ) + co~ll'dsin( co(0]'x )+

co[21*dcosh( cotO]'x )+ coE3j*dsinh( co(0]'x ))

return ( y )

double phi2( x, co)

NAME

phi? .................... square of beam characteristic equation

SYNOPSIS

y = phi2( x, co );calculate square of displacement from
beam characteristic equation

double *co coefficients of characteristic equation
X, beam coordinate
Y; displacement of beam at location x

DESCRIPTION

Calculate square of displacement of beam at location x. Displacement
has the following equation form

phi(x) = scale factor*( cos( co[O]'x )+ co(1]'sin( coCO]'x )+
co[2J'cosh( co[01*x + co[31*si'ih( cofO1*x))
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coED] = kappa;
cof1] = mode.element[21;
co[2] = mode.element[3];
co[3] = mode.element[41;
co[41 = scale-factor;

FUNCTIONS USED

phi ........................ beam characteristic equation

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Halt, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

double phio);

/* calculate square of displacement of beam at x */

return ( sqr( phi( x, co ) ) );
)

/*ARGSUSED parameter x is not used in this function*/

double pzb limit( x, co )

NAME

pzb timit .................. z coordinate Lower Limit of
integration over the plastic range

SYNOPSIS

y = pzb Limit( x, co ); z coordinate lower limit of
integration over the plastic beam
material

double *co, user modifiable coefficients for
defining lower limit

x, value of x coordinate for application
in setting lower limit

y; lower limit of integration

DESCRIPTION

This function defines the Lower limit of integration for the z
coordinate of a beam. The limit is specifically for the plastic
range of material. The function is called by mutti_al, a routine
that performs multiple numerical integration.

FUNCTIONS USED

REFERENCES
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Burden, R.L. and Faires, J.D. "Numerical Analysis," third
edition, Prindte, Weber and Schmidt, Boston, 1984, pp. 153-
195.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

/* the first element in the array of coefficients contains a constant
that defines the lower Limit for the function being integrated */

return ( co[O] );

/*ARGSUSED parameter x is not used in this function*/

double pzetimit( x, co )

NAME

pze Limit .................. z coordinate upper limit of
integration over the plastic range

SYNOPSIS

y = pzb.limit( x, co ); z coordinate upper limit of
integration over the plastic beam
material

double *co, user modifiable coefficients for
defining upper limit

x, value of x coordinate for application
in setting upper limit

y; upper Limit of integration

DESCRIPTION

This function defines the upper limit of integration for the z
coordinate of a beam. The Limit is specifically for the plastic
range of material. The function is called by muLtiaL, a routine
that performs muLtiple numerical integration.

FUNCTIONS USED

REFERENCES

Burden, R.L. and Faires, J.D. "Numerical Analysis," third
edition, PrindLe, Weber and Schmidt, Boston, 1984, pp. 1b3-
195.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 18 AUG 87

double *co, x;
(

/* the second element in the array of coefficients contains a
constant that defines the upper limit for the function being
integrated */
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return ( co[1] );

NAME

p2?? ....................... partial derivative functions

SYNOPSIS

y = p2??( x, co ); partial deriviative of second equation

double *co, pointer to array of coefficients
x0 location on beam
y; partial derivative

DESCRIPTION

These functions are partial derivatives of beam generalize mass
and stiffness with respect to the eigenvaLue and the beam
characteristic equation coefficients:

p2k ..................... partial of generalized stiffness with
respect to the eigenvalue

p2kb .................... partial of generalized stiffness with
respect to the B coefficient

p2kc .................... partial of generalized stiffness with
respect to the C coefficient

p2kd .................... partial of generalized stiffness with
respect to the D coefficient

p2m ..................... partial of generalized mass with
respect to the eigenvalue

p2b .................... partial of generalized mass with
respect to the B coefficient

p2mc .................... partial of generalized mass with
respect to the C coefficient

p2md .................... partial of generalized mass with
respect to the D coefficient

co[O] = kappa;
co[1] = mode.element[2];
co[2] = mode.etement[3];
co[3] = mode.eLement [4];
co[4] = scale_factor;

FUNCTIONS USED

dcos ....................... Lattice SSP cosine function
dcosh ...................... Lattice SSP hyperbolic cosine function
dsin ....................... Lattice SSP sine function
dsinh ...................... Lattice SSP hyperbolic sine function
dphi ....................... derivative of characteristic equation

with respect to Length coordinate
ddphi ...................... second derivative of characteristic

equation with respect to length
coordinate

dddphi ..................... third derivative of characteristic
equation with respect to length
coordinate

phi ........................ beam characteristic equation

REFERENCES

Burden, R.L. and Faires, J.D. "Numerical Analysis," third
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edition, Prindle, Weber and Schmidt, Boston, 1984, pp. 153-
195.

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hitt, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applicdtions," Prentice-
Halt, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 25 AUG 87

double p2k( x, co)
double *co, x;
(

double ddphio, dddphio;

/* partial derivative of generalized stiffness with respect to
eigenvalue */

return( 2.*x*ddphi( x, co )*dddphi( x, co )/co[0] );

double p2kb( x, co)
double *co, x;
(

double ddphio, dsino;

/* partial derivative of generalized stiffness with respect to
coefficient B */

return ( -2.*sqr( co[O] )*ddphi( x, co )*dsin( co[O]*x ) );

double p2kc( r, co)
double *co, x;
(

double ddphio, dcosho;

/* partial derivative of generalized stiffness with respect to
coefficient C */

return ( 2.*sqr( co[0J )*ddphi( x, co )*dcosh( co[O]*x ) );

double p2kd( x, co)
double *co, x;
(

double ddphio, dsinho;

/* partial derivative of generalized stiffness with respect to
coefficient D */

return ( 2.*sqr( co[O] )*ddphi( x, co )*dsinh( co[O]*x ) );
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double p2 ( x, co)
double *co, x;
(

double dphio, phi();

/* partial derivative of generalized mass with respect to eigenvalue */
return ( 2.*x*phi( x, co )*dphi( x, co )/co[Ol );

)

double p2ib x, co)
double *co, x;
I

double dsino), phio);

/* partial derivative of generalized mass with respect to
coefficient I */

return ( 2.*phi( x, co )*dsin( co[O]*x ) );

double p2mc( x, co)
double *co, x;
(

double dcosho, phio;

/* partial derivative of generalized mass with respect to
coefficient C */

return ( 2.*phi( x, co )*dcosh( co[O]*x ) );

double p~d( x, co)
double *co, x;
(

double dsinh(), phio;

/* partial derivative of generalized mass with respect to
coefficient D */

return ( 2.*phi( x, co )*dsinh( co[O]*x ) );

double strain( x, z, co )

NAME

strain .................... beam strain

SYNOPSIS

y = strain( x, z, co ); compute beam strain

double *co, coefficients used in strain term
X0 x coordinate of beam

y, beam strain
z; z coordinate of beam

DESCRIPTION
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Compute strain at beam coordinates given at x and z.

The strain is computed from the following formula

n(x,z) = z*phi"(x)

co[O] = kappa;
co[1] = mode.element[2];
co[2] = mode.eLement[3];
co[3] = mode.eLement [4];
co[4] = scale_factor;

FUNCTIONS USED

ddphi ...................... curvature of beam at Location x

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Hall, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 20 AUG 87

double *co, x, z;
(

double ddphio;

/* compute and return the beam strain at location x, z. */

return( z*ddphi( x, co ) );

double strain2( x, z, co )

NAME

strain2 .................... square of beam strain

SYNOPSIS

y = strain2( x, z, co ); compute square of beam strain

double *co, coefficients used in strain term
x, x coordinate of beam
y, square of beam strain
z; z coordinate of beam

DESCRIPTION

Compute and square strain at beam coordinates given at x and z.
The strain is computed from the following formula

strain(x,z) = z*phi"(x)

co[O] = kappa;
co[1] = mode.element(2];
co[2] = mode.element(3];
co[3] = mode.element[4];
co[4] = scale_factor;
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FUNCTIONS USED

strain ..................... strain of beam at location x, z

REFERENCES

Harris, C.M. and Crede, C.V. (eds). Shock and Vibration Handbook,
2nd edition, McGraw-Hill, New York, pp. 7-13 through 7-15, 1976.

Thomson, W.T. "Theory of Vibration with Applications," Prentice-
Halt, Inc. Englewood Cliffs, NJ, 1972.

AUTHOR: Rick Jones
VERSION: 1.0
DATE: 20 AUG 87

double *co, x, z;

double straino;

/* compute and return the squared beam strain at location x, z. '/

return( sqr( strain( x, z, co ) ) );

)
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Appendix E

INTERNAL DAMPING TEST RFSULTS

Results of the internal damping test are presented, together with a

discussion of damping measurement errors. Two types of internal damping

were observed: amplitude- and frequency-dependent damping.

DAMPING ERRORS AND CORRECTIONS

Two primary sources of error were uncovered while collecting the

symmetric cantilever beam damping data. The first error involves the

range of data collected. Low levels of stiain and acceleration are

imposed by the limits of the Liicke-Granato model (Ref 34, 44), requiring

sensitive transducers to accurately depict the low input levels. In

addition, measurements are taken in the first three flexural modes of

the 6- and 8-inch beam specimens; thus, imposing a large frequency span

requirement on accelerometer performance. Table E-1 lists the range of

input data collected during the damping tests.

Table E-1. Range of Accelerations and Strains
for Cantilever Beam Damping Tests

Parameter Range

Strain 10 to 100 (microstrain)

Acceleration 1 to 300 (in./sec )

Frequency 60 to 2000 (z)
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The second area of error lies in the wires connecting the strain

gages to their amplifiers. These wires, vibrating with the beam speci-

men, burden the system with external damping that must be quantified in

order to extract the internal damping values from the total damping

quantity. Quantification of the external damping due to strain gage

wiring is accomplished by removing one set of wires at a time and com-

puting the resulting change in damping. Figure E-1 shows the strain

gage arrangement and indicates the order in which the wires are removed.

Designating the damping states with zero, one, two, three and four sets
0 1 2 3 4of wires removed as A , A , A , A , and A , respectively, indicates a

4 4damping state, A , for which no measurements may be taken. A is

estimated from A3 by subtracting the change in damping when the third

set of wires is removed, that is, A3 - (A2 - A3) or:

A4 = 2A3 - A2  (E-l)

This estimate assumes that the removal of the fourth set of wires affects

the damping exactly as the removal of the third set of wires. This assump-

tion is reasonable in light of the symmetric location of the third and

fourth strain gages.

To determine the external damping decrement, the frequency-dependent

decrement, Al. calculated from Equation 37, is subtracted from A4 of
Equation E-l. The external damping decrement is determined for a beam

specimen at the three fundamental modes and an average is taken. The

expression for the external damping:

A 4 A (E-2)
ext 3 ( -

where A 4 and A are the results of Equation E-l and Equation 37 in the
th

main text of this report for the I mode, respectively. Figure 26 shows

the effect of Equation E-2 on the frequency-dependent damping decrement

for the first three modes of two symmetric cantilever beams, one 6 inches

and the other 8 inches long. Figure 26 also shows Zener's Theory super-
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imposed on the experimental data to demonstrate the error in using Equation

E-2. The maximum errors for the first, second, and third modes occurred

for 6-inch beam specimens and were 9, 36, and 100 percent, respectively.

In each case, the damping ratio error was on the order of 6 x 10-6 .

STRAIN-ANPLITUDE DEPENDENT DANPING DECREMENT

Calculation of the frequency-dependent and external damping

decrements reduces Equation F-22 in Appendix F to solving for the

average strain-amplitude dependent damping decrement, A In Equation

F-17, AH is calculated by the integration of E2AH(), where AH(E) is

given by (Ref 44):

AH(E) = C1 (C2 /E) 2E1 (C2 /E) (E-3)

where C and C2 are material constants and EI represents the exponential

integral function of the first order.

Figure 14 in the main text of this report presents damping and

strain data collected from symmetric cantilever beam tests. In Figure

14, the damping and strain data are scaled by estimates of Lhe material

constants C and C2, respectively. These estimates are based on numerical
S 2 ,

integration of E AH() with AH(c) from Equation E-3 and strain expressed

in the form of Equation F-24 in Appendix F. A 1a9t squares fit was

used to obtain the best fit of the data to the table generated by numeri-

cal integration. An algorithm based on Neville's Iterated Interpolation

was used to obtain damping values lying between tabulated quantities.

Converting all strain measurements to maximum beam strain resulted in a
-6

minimum measurable damping ratio of 6 x 10 in a strain range of 10 to
-3

20 mlcrostrain. Estimates of material constants iare C, = 54 x 10 and
-61

C2 = 14 4 x 10

E-3



~LAJ

z

LLI <
(W 0 %

Znh m RC
YN

w 0

0
ZD r.

-4

41

)4
I-,

60

a- X
CX-I

F--

E-4



Appendix F

DERIVATION OF SYMMETRIC CANTILEVER BEAN MODEL

INTRODUCTION

The purpose of this appendix is to develop the equations and terms

required to analyze the internal damping test results. An equation of

motion with its mass and stiffness terms is presented. The damping

ratio emerges in a form directly applicable to the internal damping test

approach and data reduction. Specific damping capacity is defined and

the experimental results in terms of amplitude- and frequency-dependent

damping are expressed together with external sources of damping.

EQUATION OF MOTION

The differential equation of motion for the symmetric cantilever

beam model is (Ref 72):

[EIw"(x,t)]" + c(x)w(x,t) + m(x)[wb(t) + w(x,t)] =0 (F-)

where w is the beam displacement in the z direction and I is the beam

moment of inertia. Equation F-i is rearranged to distinguish the forcing

function:

[EIw"(x,t)]" + c(x)w(x,t) + m(x)w(x,t) = -m(x)wb(t) (F-2)
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Thus, the forcing function is expressed as an inertial force per unit

length -m(x)i b(t). Assuming a solution in the form:

w(x,t) = E Bi qM(t) 0.(x) (F-3)
i

where B. is an amplitude-scaling factor, qi is a generalized coordinate,

and 0. is a characteristic shape function. The equation for the generalized

coordinate qi becomes (Ref 76):

""•2 "" m(x) 1I

q. + 24iWiq. + W. qi -wb(t) - . 0.(x) dx (F-4)
i 0

where 4i = Ci/C ci' C = 2(MiK) I 2  w (K./MAdi c c'i 1 Ki/i

and

1

= ¢ 2(x)c(x) dx (F-5)
0

1 1

K. E [ il"(x) 2 dx (F-6)
0

1

M.= I 2(x)m(x) dx
S 0

From beam theory (Ref 77), the moment in a beam vibrating in the ith

mode, M(x), is calculated by:

M(x) = El B i il" (x) (F-7)

where the second derivative of the characteristic shape function with

respect to x, i "(x), describes the curvature in the vibrating beam.

Combining Equation F-7 with the bending moment-bending strain relation-

ship (Ref 77) produces an expression for the amplitude-scaling factor in

terms of a measured strain:
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2 E(x)
B. = (F-8)

1 2
hK. i (xo)

where E(x ) is a measured strain at location x and K. is the eigenvalue@ O 1

of the 
i mode.

DAMPINC RATIO

The acceleration expression, on the right-hand side of Equation

F-4, may be repleced by a solitary parameter, zi(t), where:

z.(t) _wb(t) m (x)f (x) dx (F-9)
1 0

Assuming sinusoidal motion with wb(t) = Wbsin wt for the vibrating beam,

it follows zi(t) = Z.sin wt and i = i w from which Equation F-4 may

be rewritten:

q. = Z Wsin wt (F-10)

The steady-state solution qi = B. sin(wt - 0) is then available from

inspection to h:

B. = -- - - (F-11)
I [I 1- (w/w i ) 2 2 + [2.(w/w.) 1112

where w is the resonant frequency of the beam and Z is defined by:

Zi = Wb(t) m(x) f t(x) dx

0
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When the beam is driven at its resonance frequency, that is, w = w.,

Equation F-li reduces to:

Z.
B. - - (F-12)
1 24i

Rearranging Equation F-12 to solve for the damping ratio, 4i, results

in:

Z.
I (F-13)

i 2B.

Determination of the damping ratio, 4., for Equation F-2 is accomplished

by vibrating the beam at its resonant frequency, wi, while measuring the

base acceleration, i and the strain at some known location on the beam,

£(Xo). Equation F-8 uses E(x ) to solve for B.i and Equation F-9 requires

Wband wi to solve for Zi. Using Equation F-13 with Bi and Zi will

determine the damping ratio.

SPECIFIC DAMPING CAPACITY

For a material, the ratio of energy dissipated per cycle, Wd9 to

the peak potential energy per cycle, U, is defined as the specific

damping capacity, A,

Wd

A d (F-14)U

As developed by Shimanuki and Doi (Ref 43), the average specific damping

capacity of a material, subject to internal friction, is expressed using

a volume element:

I iAw dV (F-15)

2f w dV
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where Aw and w are the energy dissipated and the peak potential energy

per cycle in a volume element, respectively. Shimanuki and Doi assume

that Aw is a function of dislocation damping in the form of AH9 the

strain amplitude-dependent decrement and Al, the frequency-dependent

decrement. Substituting for Aw and w in Equation F-15:

A= AH + AI (F-16)

where

AH 2 A2 E) (F-17)

2H cf2 dV

and w =  2

In analyzing the specific damping capacity for the dynamic model

described in Equation F-2 an assumption must be made about c(x). As

presented in Equation F-16, the average specific damping capacity con-

sists of two terms: AH which is strain-amplitude dependent, and A1

which is frequency dependent. Thus, neither term is proportional to

velocity and c(x) must be treated as an equivalent expression of viscous

damping, c (Ref 72). From Equation F-2,
eq

Wd ceq w dw (F-18)

Expanding w from Equation F-3, Equation F-18 becomes:

Wdi = eq f0 i 2 (x) dx f qi2 (t) dt

From Equation F-5:

Ceqi = ceq f 0 2 (x) dx

0
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with the resul that:

c , *2
Wd i = Ceqi qi (t) dt

Assuming steady-state harmonic displacement and velocity,

Wdi = B i2wC (F-19)di i eqi

From Thompson (Ref 72), WCeqi = 2 iKi, which when substituted into

Equation F-19 produces the final expression for Wdi:

Wdi = 2B i2i.Ki

th
The peak potential energy per cycle in the i mode is given by:

U.i = 1/2B2 Ki

Substituting for Wd and U in Equation F-14, the average specific damping

capacity for the beam is:

A = 4vr . (F-20)

Equating Equations F-16 and F-20:

At 4- A = 4r . (F-21)

Equation F-21 assumes no external damping influences the damping ratio.

This assumption is not an accurate reflection of a "real-world" system

where attachment points and connections are subject to slippage and

friction. Therefore some external tinping mnst be included in the
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system. This external damping is represented by A ext . Before the

specific damping capacity can be determined, A must be estimated.ext

Modifying Equation F-21 to reflect the inclusion of external damping:

A H + A = 4w -A (F-22)H I - ext

Characteristic shape functions for a cantilever beam are well-

defined, with authors using various formats for identical expressions

(Ref 72, 78). This paper will borrow the format of Harris and Crede

(Ref 78) to symbolize the shape function for a cantilever beam:

i (X) = (cos K.x - cosh K ix) + Ri(sin K.X - sinh K .X) (F-23)

where R. is a ratio of nonzero constants. Table F-1 displays values of1

K.1 and R, for the first three modes of vibration. Differentiating1 1

Equation F-23 twice with respect to x produces the beam curvature:

0ill'( X ) = -K' 2[(COS K.X + cosh K.x) + Ri(sin K .X + sinh K,.x)J (F-24)

Equation F-24 is used in conjunction with Equation F-8 to compute the

amplitude scaling factor, BV, from experimental data, E(x ).

Table F-1. K.1 and R. for First Three Modes
1 1

of a Cantilever Beam

Mode, i Eigenvalue, Kil Ratio, R.

1 1.8751 -0.7341

2 4.6941 -1.0185

3 7.8548 -0.9992
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Appendix G

DERIVATION OF FOUR-POINT BEAM FATIGUE MODEL

INTRODUCTION

This appendix parallels the procedure of Appendix F in the

derivation of a model with which to analyze the results of the four-

point beam fatigue tests. An expression for the knife edges supporting

the fatigue specimen is derived and the boundary conditions are deter-

mined. The equation of motion and mass and stiffness terms are presented,

and the damping term is derived. Finally, an empirical expression for

the damping observed in 4340 steel beam fatigue specimens is provided.

KNIFE-EDGE SUPPORT MODEL

Support for the four-point beam is a clamped knife-edge pair (see

Figure 10 in the main text). The knife-edge pair, while allowing some

rotation, does impose a moment, M ke. Visual observation of the knife

edges during fatigue loading indicates the beam rotates about the more

rigidly mounted knife edge of the pair. This situation introduces some

axial loading to the beam that must be accounted for when analyzing the

beam under fatigue load. However, as the strains, and therefore the

rotations, are small for the load appiled during damping data acquisition,

it is assumed the point of rotation lies along the center of the beam

and the axial loading is negligible. The error associated with this
-7

assumption is on the order of 10 given a maximum strain of 100 micro

strain in a simple-supported beam.
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BOUNDARY CONDITIONS

The moment imposed by the knife-edge support is computed from:

Mke = kke W'(0) (G-1)

where w'(0) is the beam rotation at the knife-edge support. As:

Mke = EIw"(0)

where w"(0) is the beam curvature at the knife-edge support, Equation

G-1 provides a boundary condition in the form:

EIw"(0) = kke w'(0)

The moment imposed by a crack at the beam midpoint is computed from

(Ref 79):

M = k (a) w'(1/2) (G-2)c c

where M is the imposed moment and w'(1/2) is the beam rotation at itsc

midpoint. The moment is expressed as a function of the curvature at the

beam midpoint, w"(1/2),

M = EIw"(1/2) (G-3)c

Equation G-2 and G-3 provide a second boundary condition:

EIw"(1/2) = k (a) w'(1/2)
c

The two remaining boundary conditions are based on a beam with a simple

support at one endpoint and guided at the other. These boundary condi-

tions are given by:
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w(O) = 0

and

w'(1/2) = 0

where w(O) is the displacement at the knife-edge support and w'"(1/2) is

the third derivative of the beam displacement with respect to x at the

beam midpoint.

EQUATION OF NOTION

The equat~on of motion for the four-point beam is given by:

[Elw"(x,t)]" + c(x)w(x,t) + m(x)w(x,t) + m exw(l ext) = F ex( ext) (G-4)

Employment of Equation F-3 in transforming Equation G-4 produces an

equation of motion in generalized coordinates:

q. + 2 iwiq. + W. qi -1 l *(x) F (I ,t) dx (G-5)I 1 i 1 1 1 ex ex,

Equations F-5 and F-6 apply to Equation G-5; however, the generalized

mass expression has been altered due to the mass of the exciter. The

generalized mass is expressed as:

M. f 01
2(x)m(x) dx + 2(1 ex )mex0

The unit impulse or delta function, 6(x-&) (Ref 72), models a point

load at the location = I ex. Assuming F ex(I ,t) is harmonic, the forcing

function is separated into two components, one x nnd the other t dependent.
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With this assumption, the forcing function becomes fex 6(x-l ex)sin wt,

where f is the amplitude scaling factor. Using this expression,ex

integration in Equation G-5 becomes trivial, with the result:

f
S+ 2q _ ex

q i + 2iiqi + Wi qi =M. i(lex) sin wt (G-6)
1

SPECIFIC DAMPING CAPACITY

Treating the right-hand side of Equation G-6 as the parameter i(0)

that is,

f
z.(t) = ex .(1e) sin wt (G-7)
1 M. i 1ex~I

the relationship between displacement and specific damping capacity is

established as demonstrated in Appendix F. From Equation G-7, it follows
2

zi(t) = Zisin wt where i. -z. w and:

f
Zi =- ex i ( l e x )  (G-8)

Substitution of Z i into Equation G-6 produces Equation F-10 of Appendix

F. Thus, the four-point beam specimen will have its specific damping

capacity determined in a manner similar to that applied to the symmetric

cantilever beam damping specimen.

Results from the 4340 steel beam fatigue tests do not conform to

the dislocation damping based model. This appendix develops a second

damping mechanism, based on crack surface rotation, that adequately

models and explains the observed damping phenomena. This new mechanism

produces an empirical expression that is used in the four-point beam

fatigue model.

G-4



EMPIRICAL DAMPING EXPRESSION

With the results of the 4340 steel beam fatigue test suggesting a

strong relationship between the crack length and damping, the decision

was made to review previous work to reconcile the proposed constitutive

relationship with experimental data. Previous work with 1018 steel beams

(Ref 73) included similar fatigue tests. These tests were performed

under constant load. The softer 1018 steel forms a large plastic zone

with the increasing stress intensity function associated with a constant

load. This large plastic zone does not allow the crack surfaces to touch

as the beam vibrates to collect damping data.

Figures 16 through 18 in the main text show a crack growth rate per

cycle that is proportional to the stress intensity factor raised to the

fourth power. In equation form, this relation is expressed by:

da _ K 4
dN (G-9)

where ac is a material dependent constant, N is the fatigue cycle number,

and K I is the stress intensity factor. Equation G-9 is consistent with

the dislocation theory of crack growth as described by Frost, Marsh, and

Pook (Ref 60). Rearranging Equation G-9 and integrating over one cycle

produces:

da (G-10)

faJ-  K 4(a) c

where the crack growth in one cycle is calculated from:

Aa, = a, -a
j j j-1

In Equation G-10, KI is assumed to be a function of the crack length.

The expression for KI is taken from Equation 31 in the main text.
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Numerical integration is required to solve the integrand when this com-

plex term is substituted for K From the Experimental Approach section

in the main text of this report, a is defined by:

6M
h2

where M is given by:

1
M lP - M (G-11)

2 a ke

In Equation G-11, I is the distance from the knife-edge support to thea

applied load, P, and Mke is the moment created by the knife-edge.

The natural frequency of the fatigue specimen, as the crack propa-

gates, is computed from the ratio of Equations F-6 and F-16 with adjust-

ments to k to simulate the crack growth. The relationship between kc c

and the crack length, a, using least squares analysis is:

k = b (h/a) 3  (G-12)c c

where b is a material-dependent constant (see Figure G-1). For thec

4340 steel beam specimens, b = 2.45. This relationship, for the threec

beam specimens analyzed, resembles the moment of inertia expression in

its usage of beam height (Ref 77).

G-6



.0

* (0

(A 0

m 0 
)

to
4, 5 5 0

cn CD CD 4

00

o1
U4

ul-ql~~~ Uso l!s 1))i



DISTRIBUTION LIST

ADVANCED TECHNOLOGY, INC / Ops Cen Mgr (Bednar), Camarillo, CA
AF / 438 ABG/DEE (Wilson), McGuire AFB, NJ
AF / AFIT/DET (Hudson), Wright-Patterson AFB, OH
AF HQ / ESD/AVMS, Hanscom AFB, MA
AF HQ / ESD/DEE, Hanscom AFB, MA
AFB / HQ MAC/DEEE, Scott AFB, IL
AFESC / TIC Lib, Tyndall AFB, FL
AFIT / DET, Wright-Patterson AFB, OH
AMERICAN CONCRETE / Lib, Detroit, MI
ARMY / HQDA (DAEN-ZCM), Washington, DC
ARMY / R&D Lab, STRNC-UE, Natick, MA
ARMY CECOM R&D TECH LIBRARY / ASNC-ELC-I-T, Ft Monmouth, NJ
ARMY CERL / CECER-EME (Hayes), Champaign, IL
ARMY CERL / Lib, Champaign, IL
ARMY EHA / HSHB-EW, Aberdeen Proving Ground, MD
ARMY ENGRG DIST / CENPS-ED-SD, Seattle, WA
ARMY ENGRG DIST / Lib, Seattle, WA
ARMY ENGRG DIST / LMVCO-A/Bentley, Vicksburg, MS
ARMY ENGRG DIST / Phila, Lib, Philadelphia, PA
ARMY ENGRG DIV / CEHND-ED-CS, Huntsville, AL
ARMY ENGRG DIV / ED-SY (Loyd), Huntsville, AL
ARMY ENGRG DIV / HNDED-SY, Huntsville, AL
ARMY EWES / GP-EC (Webster), Vicksburg, MS
ARMY EWES / Lib, Vicksburg, MS
ARMY EWES / WESCD-P (Melby), Vicksburg, MS
\RMY EWES / WESCV-Z (Whalin), Vicksburg, MS
ARMY EWES / WESGP, Vicksburg, MS
ARMY MISSILE R&D CMD / Ch, Docs, Sci Info Ctr, Redstone Arsenal, AL
ARMY MMRC / DRXMR-SM (Lenoe), Watertown, MA
ATLANTIC RICHFIELD CO / RE Smith, Dallas, TX
BATTELLE / D. Frink, Columbus, OH
BECHTEL CIVIL, INC / K. Mark, San Francisco, CA
BETHLEHEM STEEL CO / Engrg Dept, Bethlehem, PA
BRITISH EMBASSY / Sci & Tech Dept (Wilkins), Washington, DC
BROWN & ROOT / Ward, Houston, TX
CAL STATE UNIV / C.V. Chelapati, Long Beach, CA
CANADA / Viateur De Champlain. Matane, Quebec
CASE WESTERN RESERVE UNIV / CE Dept (Perdikaris), Cleveland, OH
CATHOLIC UNIV / CE Dept (Kim) Washington, DC
CHEVRON OIL FLD RSCH CO / Strickland, La Habra, CA
CHILDS ENGRG CORP / K.M. Childs, Jr., Medfield, MA
CITY OF LIVERMORE / Dackins, PE, Livermore, CA
CLARENCE R JONES / Augusta, GA
CLARKSON COLL OF TECH / CE Dept, Potsdam, NY
CNA / Tech Lib, Alexandria, VA
COGUARD R&D CEN / Lib, Groton, CT
COLLINS ENGRG, INC / M Garlich, Chicago, IL
COLORADO STATE UNIV / CE Dept (Criswell), Ft. Collins, CO
COMDT COGUARD / Lib, Washington, DC
CONRAD ASSOC / Lulsoni, Van Nuys, CA



CONSOER TOWNSEND & ASSOC / Schramm, Chicago, IL
CONSTRUCTION TECH LABS, INC / G. Corley, Skokie, IL
CORNELL UNIV / Civil & Environ Engrg, Ithaca, NY
CORNELL UNIV / Lib, Ithaca, NY
DAMES & MOORE / Lib, Los Angeles, CA
DAVY DRAVO / Wright, Pittsburg, PA
DILLINGHAM CONSTR CORP / (HD&C), F McHale, Honolulu, HI
DIRSSP / Tech Lib, Washington, DC
DOE / Wind/Ocean Tech Div, Port Tobacco, MD
DTIC / Alexandria, VA
DTRCEN / Code 172, Bethesda, MD
DTRCEN / Code 4111, Bethesda, MD
EARL & WRIGHT CONSULTING ENGRGS / Jensen, San Francisco, CA
EDWARD K NODA & ASSOC / Honolulu, HI
ESCO SCIENTIFIC PRODUCTS (ASIA) / PTE LTD, , Singapore
EVALUATION ASSOC, INC / MA Fedele, King of Prussia, PA
FAA / Code APM-740 (Tomita), Washington, DC
FLORIDA ATLANTIC UNIV / Ocean Engrg Dept (Su), Boca Raton, FL
FLORIDA INST OF TECH / CE Dept (Kalajian), Melbourne, FL
GEORGIA INST OF TECH / CE Schl (Kahn), Atlanta, GA
GEORGIA INST OF TECH / CE Schl (Swanger), Atlanta, GA
GEORGIA INST OF-TECH / CE Schl (Zuruck), Atlanta, GA
GIDEP / OIC, Corona, CA
GRUMMAN AEROSPACE CORP / Tech Info Ctr, Bethpage, NY
ITALEY & ALDRICH, INC. / T.C. Dunn, Cambridge, MA
!ARTFORD STEAM BOILER INSP & INS CO / Spinelli, Hartford, CT
IIAYNES & ASSOC / H. Haynes, PE, Oakland, CA
HIRSCH & CO / L Hirsch, San Diego, CA
HJ DEGENKOLB ASSOC / W. Murdough, San Francisco, CA
HUGHES AIRCRAFT CO / Tech Doc Cen, El Segundo, CA
INST OF MARINE SCIENCES / Lib, Port Aransas, TX
INTL MARITIME, INC / D. Walsh, San Pedro, CA
IRE-ITTD / Input Proc Dir (R. Danford), Eagan, MN
JAMES ISHIffARA / OES/PHS/DHHS, Seattle, WA
JOHN HOPKINS UNIV / CE Dept, Jones, Baltimore, MD
JOHN J MC MULLEN ASSOC / Arlington, VA
LAWRENCE LIVERMORE NATL LAB / FJ Tokarz, Livermore, CA
LAWRENCE LIVERMORE NATL LAB / Plant Engrg Lib (L-654), Livermore, CA
LEHIGH UNIV / Linderman Library, Bethlehem, PA
LEO A DALY CO / Honolulu, HI
LIBRARY OF CONGRESS / Sci & Tech Div, Wasnington, DC
LIN OFFSHORE ENGRG / P. Chow, San Francisco, CA
LINDA HALL LIBRARY / Doc Dept, Kansas City, MO
LONG BEACH PORT / Engrg Dir (Allen), Long Beach, CA
MARATHON OIL CO / Gamble, Houston, TX
MARITECH ENGRG / Donoghue, Austin, TX
MC CLELLAND ENGRS, INC / Lib, Houston, TX
MICHIGAN TECH UNIV / CO Dept (Haas), Houghton, MI
MIT / Engrg Lib, Cambridge, MA
MIT / Lib, Tech Reports, Cambridge, MA
MOBIL R&D Corp / Offshore Engrg Lib, Dallas, TX
MT DAVISSON / CE, Savoy, IL
NATL ACADEMY OF SCIENCES / NRC, Naval Studies Bd, Washington, DC



NAVAIRENGCEN / Code 1822, Lakehurst, NJ
NAVAL WAR COLLEGE / Code 24, Newport, RI
NAVCOASTSYSCEN / Tech Lib, Panama City, FL
NAVEODTECHCEN / Tech Lib, Indian Head, MD
NAVFACENGCOM / Code 03, Alexandria, VA
NAVFACENGCOM / Code 03T (Essoglou), Alexandria, VA
NAVFACENGCOM / Code 09M124 (Lib), Alexandria, VA
NAVSCOLCECOFF / Code C35, Port Hueneme, CA
NEW ZEALAND CONCRETE RSCH ASSN / Lib, Porirua,
NRL / Code 2511, Wasnington, DC
NRL / Code 4670, Washington, DC
NUHN & ASSOC / A.C. Nuhn, Wayzata, NM
OREGON STATE UNIV / CE Dept (Hicks), Corvallis, OR
PACIFIC MARINE TECH / M. Wagner, Duvall, WA
PENNSYLVANIA STATE UNIV / Gotolski, University Park, PA
PENNSYLVANIA STATE UNIV / Rsch Lab, State College, PA
PILE BUCK, INC / Smoot, Jupiter, FL
PMB ENGRG / Lundberg, San Francisco, CA
PORTLAND CEMENT ASSOC / AE Fiorato, Skokie, IL
PORTLAND STATE U4IV / Engrg Dept (Migliori), Portland, OR
PRESNELL ASSOC, INC / DG Presnell, Jr, Louisvil n, KY
PURDUE UNIV / CE Scol (Leonards), West Lafayette, IN
PURDUE UNIV / Engrg Lib, West Lafayette, IN
SAN DIEGO STATE UNIV / CE Dept (Krishnamoorthy), San Diego, CA
SANDIA LABS / Lib, Livermore, CA
SARGENT & HERKES, INC / JP Pierce, Jr, New Orleans, LA
SAUDI ARABIA / King Saud Univ,
SEATECH CORP / Peroni, Miami, FL
SEATTLE PORT / W Ritchie, Seattle, WA
SEATTLE UNIV / CE Dept (Schwaegler), Seattle, WA
SHELL OIL CO / E. Doyle, Houston, TX
SIMPSON, GUMPEPTZ & HEGER, INC / Hill, Arlington, MA
SOUTHWEST RSCH INST / Energetic Sys Dept (Esrirza), San Antonio, TX
SOUTHWEST RSCH INST / King, San Antonio, TX
SOUTHWEST RSCH INST / M. Polcyn, San Antonio, TX
SOUTHWEST RSCH INST / Marchand, San Antonio, TX
STATE UNIV OF NEW YORK / CE Dept, Buffalo, NY
STATE UNIV OF NEW YORK / CE Dept, Buffalo, NY
TEXAS A&M UNIV / CE Dept (Machemehl), College Station, TX
TEXAS A&M UNIV / CE Dept (Niedzwecki), College Station, TX
TEXAS A&M UNIV / Ocean Engr Pro', College Station, TX
TRW INC / Crawford, Redondo Bnach CA
TRW INC / Dai, San Bernardino, CA
TRW INC / Engr Lib, Cleveland, OH
TRW INC / Rodgers, Redondo Beach, CA
TUDOR ENGRG CO / Ellegood, Phoenix, AZ
UNIV OF CALIFORNIA / CE Dept (Fenves), Berkeley, CA
UNIV OF CALIFORNIA / CE Dept (Fourney), Los Angeles, CA
UNIV OF CALIFORNIA / CE Dept (GerwicK), Berkeley, CA
UNIV OF CALIFORNIA / CE Dept (Taylor), Davis, CA
UNIV OF CALIFORNIA / CE Dept (Williamson), Berkeley, CA
UNIV OF CALIFORNIA / Naval Archt Dept, Berkeley, CA
UNIV OF HARTFORD / CE Dept (Keshnwarz), West Hnrtford, CT



UNIV OF HAWAII / CE Dept (Chiu), Honolulu, HI
UNIV OF HAWAII / Manoa, Lib, Honolulu, HI
UNIV OF HAWAII / Ocean Engrg Dept (Ertekin), Honolulu, HI
UNIV OF ILLINOIS / Lib, Urbana, IL
UNIV OF ILLINOIS / Metz Ref Rm, Urbana, IL
UNIV OF MICHIGAN / CE Dept (Richart), Ann Arbor, MI
UNIV OF NEBRASKA / Director, Lincoln, NE
UNIV OF NEW MEXICO / HL Schreyer, Albuquerque, NM
UNIV OF NEW MEXICO / NMERI (Bean), Albuquerque, NM
UNIV OF NEW MEXICO / NMERI (Falk), Albuquerque, NM
UNIV OF NEW MEXICO / NMERI (Leigh), Albuquerque, NM
UNIV OF PENNSYLVANIA / Dept of Arch, Philadephia, PA
UNIV OF RHODE ISLAND / CE 7,ept (Kovacs), Kingston, RI
UNIV OF RHODE ISLAND / CE Dept, Kingston, RI
UNIV OF TEXAS / CE Dept (Thompson), Austin, TX
UNIV OF TEXAS / Construction Industry Inst, Austin, TX
UNIV OF TEXAS / ECJ 4.8 (Breen), Austin, TX
UNIV OF WASHINGTON / CE Dept (Mattock), Seattle, WA
UNIV OF WISCONSIN / Great Lakes Studies Cen, Milwaukee, WI
USDA / Ext Serv, T. Maher, Washington, DC
USDA / For Svc Reg 8, (Bowers), Atlanta, GA
USDA / For Svc, Reg Bridge Engr, Aloha, OR
USDA / Forest Svc, Washington, DC
USNA / Ch, Mech Engrg Dept (C Wu), Annapolis, MD
USNA / Ocean Engrg Dept, Annapolis, ND
VSE / Ocean Engrg Gp (Murton), Alexandria, VA
VULCAN IRON WORKS / Warrington, Cleveland, TN
WESTINGHOUSE ELECTRIC CORP / Lib, Pittsburg, PA
WISS, JANNEY, ELSTNER, & ASSOC / DW Pfeifer, Northbrook, IL
WISWELL, INC. / Wiswell, Southport, CT
WOODWARD-CLYDE CG.SULTANTS / R. Cross, Oakland, CA



INSTRUCTIONS

The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of tne

label on the reverse side has several numbers listed. These numbers correspond to numbers assigned to

the list of Subject Categories. Nunibers on the label corresponding to those on the list indicate the

subject category and type of documents you are presently receiving. If you are satisfied, throw this card

away (or file it for later reference).

If you want to change what you are presently receiving:

" Delete - mark off number on bottom of label.

" Add - circle number on list.

* Remove my name from all your lists - check box on list.

* Change my address - line out incorrect line and write in correction (DO NOT REMOVE LABEL).

" Number of copies should be entered after the title of the subject categories you select.

Fold on line below and drop ir the mail.

Note: Numbers on label but not listed on questionnaire are for NCEL use only, please ignore them.

Fold on line and staple.

DEPARTMENT OF THE NAVY IIIIII
Naval Civil Engineering Laboratory
Port Hueneme. CA 93043-5003

NO POSTAGE
Official Business NECESSARY
Penalty for Private Use, $300 IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY CARD____
FIRST CLASS PERMIT NO 69

POSTAGE WILL BE PAID BY ADDRESSE

Commanding Officer
Code L34
Naval Civil Engineering Laboratory
Port Hueneme, California 93043-5003



DISTRIBUTION QUESTIONNAIRE
The Naval Civi Engineering Laboratory is revising its Primary distribution lists.

SUBJECT CATEGORIES 28 ENERGY/POWER GENERATION
29 Thermal conservation (thermal engineering of buildings, HVAC

1 SHORE FACILITIES systems. energy loss measurement. power generation)
2 Construction methods and materials (including corrosion 30 Controls and electrical conservation (electrical systems,

control, coatings) energy monitoring and control systems)
3 Waterfront structures (maintenance/deterioration rontrol) 31 Fuel flexibility (liquid fuels. coal utilization, energy
4 Utilities (including power conditioning) from solid waste)
5 Explosives safety 32 Alternate energy source (geothermal power. photovoltaic
6 Aviation Engineering Test Facilities power systems, solar systems. wind systems, energy storage
7 Fire prevention and control systems)
8 Antenna technology 33 Site data and systems integration (energy resource data.
9 Structural analysis and cesign (including numerical and energy consumption data. integrating energy systems)

computer techniques) 34 ENVIRONMENTAL PROTECTION
10 Protective construction (inciuding hardened shelters. 35 Solid waste management

shock and vibration studies) 36 Hazardous/toxic materials management
11 Soil/rock mechanics 37 Waste water management and sanitary engineering
14 Airfields and pavements 38 Oil pollution removal and recovery

39 Air pollution

15 ADVANCED BASE AND AMPHIBIOUS FACILITIES

16 Base facilities (including shelters, power generation. water 44 OCEAN ENGINEERING
supplies) 45 Seafloor soils and foundations

17 Expedient roads/airfields/bridges 46 Seafloor construction systems and operations (including
18 Amphibious operations (including breakwaters, wave forces) diver and manipulator tools)
19 Over-*ie-Beach operations (including containerization. 47 Undersea structures and materials

materiel transfer, lighteraoe and cranes) 48 Anchors and moorings
20 POL storage, transfer and distribution 49 Undersea power systems. electromechanical cables.

and connectors
50 Pressure vessel facilities
51 Physical environment (including site surveying)
52 Ocean-based concrete structures
54 Undersea cable dynamics

TYPES OF DOCUMENTS
85 Techdata Sheets 86 Technical Reports and Technical Notes 82 NCEL Guides& Abstracts Dl None-
83 Table of Contents & Index to TDS 91 Physical Security remove my name



NCEL DOCUMENT EVALUATION

You are number one with us; how do we rate with you?

We at NCEL want to provide you our customer the best possible reports but we need your help. Therefore, I ask you
to please take the time from your busy schedule to fill out this questionnaire. Your response will assist us in providing
the best reports possible for our users. I wish to thank you in advance for your assistance. I assure you that the
information you provide will help us to be more responsive to your future needs.

R. N. STORER, Ph.D, P.E.
Technical Director

DOCUMENT NO. TITLE OF DOCUMENT:

Date: Respondeit Organization :

Name: Activity Code:
Phone: Grade/Rank:

Category (please check):

Sponsor __ User __ Proponent _ Other (Specify)

Please answer on your behalf only; not on your organization's. Please check (use an X) only the block that most closely
describes your attitude or feeling toward that statement:

SA Strongly Agree A Agree 0 Neutral D Disagree SD Strongly Disagree

SA A N D SD SA A N D SD

1. The technical quality of the report ( ) ( ) ( ) ( ) ( ) 6. The conclusions and recommenda- ( ) ( ) ( ) (
is comparable to most of my other tions are clear and directly sup-
sources of technical information, ported by the contents of the

report.
2. The report will make significant ( ) ( ) ( ) (

improvements in the cost and or 7. The graphics, tables, and photo- ( ) ( ) ) (
performance of my operation. graphs are well done.

3. The report acknowledges related ( ) ( ) ( ) (
work accomplished by others. j Do you wish to continue getting

4. The report is well formatted. (NCEL reports? YES NO

Please add any comments (e.g., in what ways can we

5. The report is clearly written. (i) ) ) ) ) improve the quality of our reports?) on the back of this

form,



Comments

Please fold on line and staple

DEPARTMENT OF THE NAVY
Naval C" Engineering Laboratory
Port Hunme. CA 93043-5003

Official Business
Ponalt for Private Use S300

Code L03B
NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME, CA 93043-5003


